Open Access. Powered by Scholars. Published by Universities.®

Computational Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Computational Neuroscience

Axonal Blockage With Microscopic Magnetic Stimulation, Hui Ye Oct 2020

Axonal Blockage With Microscopic Magnetic Stimulation, Hui Ye

Biology: Faculty Publications and Other Works

Numerous neurological dysfunctions are characterized by undesirable nerve activity. By providing reversible nerve blockage, electric stimulation with an implanted electrode holds promise in the treatment of these conditions. However, there are several limitations to its application, including poor bio-compatibility and decreased efficacy during chronic implantation. A magnetic coil of miniature size can mitigate some of these problems, by coating it with biocompatible material for chronic implantation. However, it is unknown if miniature coils could be effective in axonal blockage and, if so, what the underlying mechanisms are. Here we demonstrate that a submillimeter magnetic coil can reversibly block action potentials …


3d Architectural Analysis Of Neurons, Astrocytes, Vasculature & Nuclei In The Motor And Somatosensory Murine Cortical Columns, Jared Leichner Jul 2020

3d Architectural Analysis Of Neurons, Astrocytes, Vasculature & Nuclei In The Motor And Somatosensory Murine Cortical Columns, Jared Leichner

FIU Electronic Theses and Dissertations

Characterization of the complex cortical structure of the brain at a cellular level is a fundamental goal of neuroscience which can provide a better understanding of both normal function as well as disease state progression. Many challenges exist however when carrying out this form of analysis. Immunofluorescent staining is a key technique for revealing 3-dimensional structure, but subsequent fluorescence microscopy is limited by the quantity of simultaneous targets that can be labeled and intrinsic lateral and isotropic axial point-spread function (PSF) blurring during the imaging process in a spectral and depth-dependent manner. Even after successful staining, imaging and optical deconvolution, …


Circuits With Broken Fibration Symmetries Perform Core Logic Computations In Biological Networks, Ian Leifer, Flaviano Morone, Saulo D. S. Reis, José S. Andrade Jr., Mariano Sigman, Hernán A. Makse Jun 2020

Circuits With Broken Fibration Symmetries Perform Core Logic Computations In Biological Networks, Ian Leifer, Flaviano Morone, Saulo D. S. Reis, José S. Andrade Jr., Mariano Sigman, Hernán A. Makse

Publications and Research

We show that logic computational circuits in gene regulatory networks arise from a fibration symmetry breaking in the network structure. From this idea we implement a constructive procedure that reveals a hierarchy of genetic circuits, ubiquitous across species, that are surprising analogues to the emblematic circuits of solid-state electronics: starting from the transistor and progressing to ring oscillators, current-mirror circuits to toggle switches and flip-flops. These canonical variants serve fundamental operations of synchronization and clocks (in their symmetric states) and memory storage (in their broken symmetry states). These conclusions introduce a theoretically principled strategy to search for computational building blocks …


Using Machine Learning To Conduct A Detailed Behavioral Analysis In An Appetitive Social Learning Task, Thomas Shao May 2020

Using Machine Learning To Conduct A Detailed Behavioral Analysis In An Appetitive Social Learning Task, Thomas Shao

Honors Scholar Theses

Learning by watching others, or observational learning, is important for social development and survival. However, not much is known about the brain mechanisms underlying this type of learning. Since the 1960s, observational learning has been widely studied in humans, but developing and analyzing experiments for animals has been challenging. Here, I explore observational learning using a novel paradigm while performing an analysis that involves tracking the rats using an active learning paradigm called DeepLabCut. In this novel paradigm, customized operant conditioning chambers are used for the rats to observe and learn from another animal repeatedly on multiple trials each day. …