Open Access. Powered by Scholars. Published by Universities.®

Computational Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Computational Neuroscience

Review: Do The Different Sensory Areas Within The Cat Anterior Ectosylvian Sulcal Cortex Collectively Represent A Network Multisensory Hub?, M. Alex Meredith, Mark T. Wallace, H. Ruth Clemo Jan 2018

Review: Do The Different Sensory Areas Within The Cat Anterior Ectosylvian Sulcal Cortex Collectively Represent A Network Multisensory Hub?, M. Alex Meredith, Mark T. Wallace, H. Ruth Clemo

Anatomy and Neurobiology Publications

Current theory supports that the numerous functional areas of the cerebral cortex are organized and function as a network. Using connectional databases and computational approaches, the cerebral network has been demonstrated to exhibit a hierarchical structure composed of areas, clusters and, ultimately, hubs. Hubs are highly connected, higher-order regions that also facilitate communication between different sensory modalities. One region computationally identified network hub is the visual area of the Anterior Ectosylvian Sulcal cortex (AESc) of the cat. The Anterior Ectosylvian Visual area (AEV) is but one component of the AESc that also includes the auditory (Field of the Anterior Ectosylvian …


“My Logic Is Undeniable”: Replicating The Brain For Ideal Artificial Intelligence, Samuel C. Adams Apr 2016

“My Logic Is Undeniable”: Replicating The Brain For Ideal Artificial Intelligence, Samuel C. Adams

Senior Honors Theses

Alan Turing asked if machines can think, but intelligence is more than logic and reason. I ask if a machine can feel pain or joy, have visions and dreams, or paint a masterpiece. The human brain sets the bar high, and despite our progress, artificial intelligence has a long way to go. Studying neurology from a software engineer’s perspective reveals numerous uncanny similarities between the functionality of the brain and that of a computer. If the brain is a biological computer, then it is the embodiment of artificial intelligence beyond anything we have yet achieved, and its architecture is advanced …


Pathological Effects Of Repeated Concussive Tbi In Mouse Models: Periventricular Damage And Ventriculomegaly, Richard H. Wolferz Jr. May 2015

Pathological Effects Of Repeated Concussive Tbi In Mouse Models: Periventricular Damage And Ventriculomegaly, Richard H. Wolferz Jr.

Honors Scholar Theses

Repeated concussive traumatic brain injury (rcTBI) is the most prominent form of head injury affecting the brain, with an estimated 1.7 million Americans affected each year (Kuhn 2012). Neurologists have been concerned about the danger of repeated head impacts since the 1920’s, but researchers have only begun to understand the long-term effects of rcTBI (McKee 2009). Although symptoms can be as mild as dizziness, current research suggests that multiple concussions can lead to a progressive degenerative brain disease known as chronic traumatic encephalopathy (CTE) (Luo 2008, McKee 2009, Kane 2013). Research on the brain is just beginning to scratch the …