Open Access. Powered by Scholars. Published by Universities.®

Computational Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Computational Neuroscience

Neural Spike Renormalization. Part I — Universal Number 1, Bo Deng Jan 2011

Neural Spike Renormalization. Part I — Universal Number 1, Bo Deng

Department of Mathematics: Faculty Publications

For a class of circuit models for neurons, it has been shown that the transmembrane electrical potentials in spike bursts have an inverse correlation with the intra-cellular energy conversion: the fewer spikes per burst the more energetic each spike is. Here we demonstrate that as the per-spike energy goes down to zero, a universal constant to the bifurcation of spike-bursts emerges in a similar way as Feigenbaum’s constant does to the period-doubling bifurcation to chaos generation, and the new universal constant is the first natural number 1.


Neural Spike Renormalization. Part Ii — Multiversal Chaos, Bo Deng Jan 2011

Neural Spike Renormalization. Part Ii — Multiversal Chaos, Bo Deng

Department of Mathematics: Faculty Publications

Reported here for the first time is a chaotic infinite-dimensional system which contains infinitely many copies of every deterministic and stochastic dynamical system of all finite dimensions. The system is the renormalizing operator of spike maps that was used in a previous paper to show that the first natural number 1 is a universal constant in the generation of metastable and plastic spike-bursts of a class of circuit models of neurons.