Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Neuroscience and Neurobiology

The Importance Of Contrast Sensitivity, Color Vision, And Electrophysiological Testing In Clinical And Occupational Settings, Frances Silva Aug 2023

The Importance Of Contrast Sensitivity, Color Vision, And Electrophysiological Testing In Clinical And Occupational Settings, Frances Silva

Theses & Dissertations

Visual acuity (VA) is universally accepted as the gold standard metric for ocular vision and function. Contrast sensitivity (CS), color vision, and electrophysiological testing for clinical and occupational settings are warranted despite being deemed ancillary and minimally utilized by clinicians. These assessments provide essential information to subjectively and objectively quantify and obtain optimal functional vision. They are useful for baseline data and monitoring hereditary and progressive ocular conditions and cognitive function. The studies in this dissertation highlight the value of contrast sensitivity, color vision, and cone specific electrophysiological testing, as well as the novel metrics obtained with potential practical clinical …


Characterizing And Investigating The Electrophysiological Properties Of The Plastic Cricket Auditory System In Response To Cooling, Hannah Tess Scotch Jan 2022

Characterizing And Investigating The Electrophysiological Properties Of The Plastic Cricket Auditory System In Response To Cooling, Hannah Tess Scotch

Honors Projects

The auditory system of the Mediterranean field cricket (Gryllus bimaculatus) is capable of profound compensatory plasticity. Following deafferentation due to the loss of an auditory organ, the dendrites of intermediate auditory neuron Ascending Neuron 2 (AN-2) grow across the midline and functionally connect to contralateral afferents. The loss of the auditory organ can be mimicked with reversible cold-deactivation, in which cooled Peltier elements silence the auditory organ and its afferents. Though this would presumably prevent AN-2 from firing, cooling instead induces a novel firing pattern called DOPE (delayed-onset, prolonged-excitation). In this study, intracellular physiological recordings were completed before, …


Muscarinic Excitation Of Dopamine Neurons In The Ventral Tegmental Area Via Activation Of A Trpc-Like Cation Conductance, Yu Tzu Chen Jan 2021

Muscarinic Excitation Of Dopamine Neurons In The Ventral Tegmental Area Via Activation Of A Trpc-Like Cation Conductance, Yu Tzu Chen

Theses and Dissertations

Dopaminergic (DA) neurons in the ventral tegmental area (VTA) play a crucial role in reward and motivational behaviors, including the development of drug addictions. VTA DA neurons receive excitatory cholinergic inputs from the mesopontine tegmentum. Blockage of the M5 muscarinic receptor in DA neurons has been shown to attenuate drug-induced DA release and abuse-related behaviors, but the molecular mechanism is unknown. In this study, experiments were designed to identify the electrophysiological effects of muscarinic agonism in the modulation of action potential kinetics and firing patterns in VTA DA neurons of mice. Pharmacology of the muscarinic receptor-evoked current was also characterized. …


Divergence In Neuronal Calcium Dysregulation In Brain Aging And Animal Models Of Ad, Adam Ghoweri Jan 2020

Divergence In Neuronal Calcium Dysregulation In Brain Aging And Animal Models Of Ad, Adam Ghoweri

Theses and Dissertations--Pharmacology and Nutritional Sciences

Neuronal calcium dysregulation first garnered attention during the mid-1980’s as a key factor in brain aging, which led to the formulation of the Ca2+ hypothesis of brain aging and dementia. Indeed, many Ca2+-dependent cellular processes that change with age, including an increase in the afterhyperpolarization, a decrease in long-term potentiation, an increased susceptibility to long-term depression, and a reduction in short-term synaptic plasticity, have been identified. It was later determined that increased intracellular Ca2+ with age was due to increased Ca2+ channel density, elevated release from intracellular Ca2+ stores, and decreased Ca2+ buffering …


Divalent Metal Cation Entry And Cytotoxicity In Jurkat T Cells: Role Of Trpm7 Channels, Alayna N. Mellott Jan 2020

Divalent Metal Cation Entry And Cytotoxicity In Jurkat T Cells: Role Of Trpm7 Channels, Alayna N. Mellott

Browse all Theses and Dissertations

Humans are exposed daily to a variety of metals that can be harmful to our immune system. Although certain divalent metal cations are essential for numerous cellular functions and are critical trace elements in humans, the uptake mechanisms of these ions remain mostly unknown. Transient receptor potential melastatin 7 (TRPM7), which is expressed in a variety of human cell types, including lymphocytes and macrophages, conducts many divalent metal cations. TRPM7 channels are largely inactive under normal physiological conditions due to cytoplasmic magnesium acting as a channel inhibitor. Magnesium is a cofactor for many biochemical reactions. Low serum levels of magnesium, …


Data Collection Curated With An Application Ontology Describes The Methods And Results Upon Performing An Ex-Vivo Voltage-Clamp Assay On Outer Hair Cells Of The Mammalian Cochlea, Brenda Farrell, Jason Bengtson Jan 2019

Data Collection Curated With An Application Ontology Describes The Methods And Results Upon Performing An Ex-Vivo Voltage-Clamp Assay On Outer Hair Cells Of The Mammalian Cochlea, Brenda Farrell, Jason Bengtson

Research Data

This data collection describes the electrical properties of outer hair cells isolated from the mammalian cochlea of the domestic guinea pig. This data was obtained by performing whole-cell patch clamp voltage clamp assay on cells and monitoring the electrical admittance during a DC voltage ramp. The membrane capacitance was then calculated at each membrane potential from this admittance, and the voltage-independent and voltage-dependent membrane capacitance was determined upon further analysis. In some case the DC conductance was also measured by interrogation of the cell with voltage-step function which was calculated from the change in the mean steady-state current with respect …


The Effects Of A Ketone Body On Synaptic Transmission, Alexandra Elizabeth Stanback Jan 2019

The Effects Of A Ketone Body On Synaptic Transmission, Alexandra Elizabeth Stanback

Theses and Dissertations--Biology

The ketogenic diet is commonly used to control epilepsy, especially in cases when medications cannot. The diet typically consists of high fat, low carb, and adequate protein and produces a metabolite called acetoacetate. Seizure activity is characterized by glutamate excitotoxicity and therefore glutamate regulation is a point of research for control of these disorders. Acetoacetate is heavily implicated as the primary molecule responsible for decreasing glutamate in the synapse; it is believed that acetoacetate interferes with the transport of glutamate into the synaptic vesicles. The effects on synaptic transmission at glutamatergic synapses was studied in relation to the ketogenic diet …


A Combinatorial Premotor Neural Code: Transformation Of Sensory Information Into Meaningful Rhythmic Motor Output By A Network Of Heterogeneous Modulatory Neurons, Christopher John Goldsmith Mar 2018

A Combinatorial Premotor Neural Code: Transformation Of Sensory Information Into Meaningful Rhythmic Motor Output By A Network Of Heterogeneous Modulatory Neurons, Christopher John Goldsmith

Theses and Dissertations

The goal of the following research was to investigate the contributions of neural networks in selecting distinct variants of rhythmic motor activity. We used the premotor commissural ganglion (CoG) in the stomatogastric nervous system of the Jonah crab to understand how this network effectively controls the rhythms produced in downstream motor circuits. Prior research determined that individual CoG neurons are necessary to mediate sensory-induced variation in the effected motor patterns. However, single premotor neuron inputs to the STG are not sufficient to recreate the patterns induced by the selective activation of sensory pathways. Thus, it was hypothesized that the CoG-mediated …


Neurometabolic And Electrophysiological Changes During Cortical Spreading Depolarization: Multimodal Approach Based On A Lactate-Glucose Dual Microbiosensor Arrays, Cátia F. Lourenço, Ana Ledo, Greg A. Gerhardt, João Laranjinha, Rui M. Barbosa Jul 2017

Neurometabolic And Electrophysiological Changes During Cortical Spreading Depolarization: Multimodal Approach Based On A Lactate-Glucose Dual Microbiosensor Arrays, Cátia F. Lourenço, Ana Ledo, Greg A. Gerhardt, João Laranjinha, Rui M. Barbosa

Center for Microelectrode Technology Faculty Publications

Spreading depolarization (SD) is a slow propagating wave of strong depolarization of neural cells, implicated in several neuropathological conditions. The breakdown of brain homeostasis promotes significant hemodynamic and metabolic alterations, which impacts on neuronal function. In this work we aimed to develop an innovative multimodal approach, encompassing metabolic, electric and hemodynamic measurements, tailored but not limited to study SD. This was based on a novel dual-biosensor based on microelectrode arrays designed to simultaneously monitor lactate and glucose fluctuations and ongoing neuronal activity with high spatial and temporal resolution. In vitroevaluation of dual lactate-glucose microbiosensor revealed an extended linear range, …


Electrophysiological And Morphological Characterization Of Neurons In The Granular Retrosplenial Cortex, Andrew Nicholas Nye May 2017

Electrophysiological And Morphological Characterization Of Neurons In The Granular Retrosplenial Cortex, Andrew Nicholas Nye

Theses and Dissertations

The retrosplenial cortex (RSC) is a centrally located brain region that has reciprocal connections with several brain regions important for memory, including the prefrontal cortex, para-hippocampal region, hippocampal formation, and rhinal cortices. The RSC is also well connected with structures important for sensory processing, including the parietal cortex, thalamus, and visual cortices. Due to this connectivity, and early evidence that suggests the RSC plays a critical role in learning and memory, the region has recently gained much more research attention. Early studies found that patients with brain damage that includes the RSC have difficulty with verbal and visual information, retrieving …


Effect Of Somatostatin On Voltage-Gated Calcium Influx In Isolated Neonatal Rat Carotid Body Type I Cells, Eric J. Dunn Jan 2015

Effect Of Somatostatin On Voltage-Gated Calcium Influx In Isolated Neonatal Rat Carotid Body Type I Cells, Eric J. Dunn

Browse all Theses and Dissertations

Somatostatin (SST) is a neuropeptide hormone that regulates the release of secondary hormones. Evidence suggests SST plays a neuromodulatory role due to its distribution throughout the central nervous system. Interestingly, SST has been suggested to affect the carotid body, the small peripheral chemoreceptors that regulate breathing. It has been shown that the peripheral chemoreflex sensitivity to CO2 and hypoxia is reduced by SST in humans (Pedersen et al., 1999; Pandit et al., 2014). SST has also been found to inhibit whole cell Ca2+ currents recorded from adult rat carotid body type I cells (e Silva & Lewis, 1995), but the …


Modulation Of Synaptic Transmission By Adenosine In Layer 2/3 Of The Rat Visual Cortex In Vitro, Nicholas M. Bannon Apr 2013

Modulation Of Synaptic Transmission By Adenosine In Layer 2/3 Of The Rat Visual Cortex In Vitro, Nicholas M. Bannon

Master's Theses

No abstract provided.


Nmda Receptors In The Dorsal Vagal Complex Of Normal And Diabetic Mice, Eva C. Bach Jan 2013

Nmda Receptors In The Dorsal Vagal Complex Of Normal And Diabetic Mice, Eva C. Bach

Theses and Dissertations--Physiology

The dorsal vagal complex (DVC), containing the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus nerve (DMV), plays a pivotal role in autonomic regulation. Afferent fibers from peripheral organs and higher brain centers synapse in the NTS, which integrates these synaptic connections as well as information from systemically circulating hormones and metabolites. The integrated information is relayed to the dorsal motor nucleus of the vagus nerve (DMV), which in turn, projects motor fibers to elicit parasympathetic control of digestive and other viscera. Physiological functions mediated by the DVC are disrupted in diabetic patients and …


Synaptic Reorganization Of Inhibitory Hilar Interneuron Circuitry After Traumatic Brain Injury In Mice, Robert F. Hunt, Stephen W. Scheff, Bret N. Smith May 2011

Synaptic Reorganization Of Inhibitory Hilar Interneuron Circuitry After Traumatic Brain Injury In Mice, Robert F. Hunt, Stephen W. Scheff, Bret N. Smith

Physiology Faculty Publications

Functional plasticity of synaptic networks in the dentate gyrus has been implicated in the development of posttraumatic epilepsy and in cognitive dysfunction after traumatic brain injury, but little is known about potentially pathogenic changes in inhibitory circuits. We examined synaptic inhibition of dentate granule cells and excitability of surviving GABAergic hilar interneurons 8–13 weeks after cortical contusion brain injury in transgenic mice that express enhanced green fluorescent protein in a subpopulation of inhibitory neurons. Whole-cell voltage-clamp recordings in granule cells revealed a reduction in spontaneous and miniature IPSC frequency after head injury; no concurrent change in paired-pulse ratio was found …


A Functional Role For The Ventrolateral Prefrontal Cortex In Non-Spatial Auditory Cognition, Y. E. Cohen, B. E. Russ, S. J. Davis, A. E. Baker, A. L. Ackelson, R. Niteck Nov 2009

A Functional Role For The Ventrolateral Prefrontal Cortex In Non-Spatial Auditory Cognition, Y. E. Cohen, B. E. Russ, S. J. Davis, A. E. Baker, A. L. Ackelson, R. Niteck

Dartmouth Scholarship

Spatial and non-spatial sensory information is hypothesized to be evaluated in parallel pathways. In this study, we tested the spatial and non-spatial sensitivity of auditory neurons in the ventrolateral prefrontal cortex (vPFC), a cortical area in the non-spatial pathway. Activity was tested while non-human primates reported changes in an auditory stimulus' spatial or non-spatial features. We found that vPFC neurons were reliably modulated during a non-spatial auditory task but were not modulated during a spatial auditory task. The degree of modulation during the non-spatial task correlated positively with the monkeys' behavioral performance. These results are consistent with the hypotheses that …


Epilepsy-Associated Dysfunction In The Voltage-Gated Neuronal Sodium Channel Scn1a, Christoph Lossin, T. Rhodes, R. Desai, C. Vanoye, S. Caniciu, O. Devinsky, A. George Dec 2003

Epilepsy-Associated Dysfunction In The Voltage-Gated Neuronal Sodium Channel Scn1a, Christoph Lossin, T. Rhodes, R. Desai, C. Vanoye, S. Caniciu, O. Devinsky, A. George

Christoph Lossin, Ph.D.

Mutations in SCN1A, the gene encoding the brain voltage-gated sodium channel subunit (Nav1.1) are associated with at least two forms of epilepsy, generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI). We examined the functional properties of four GEFS+ alleles and one SMEI allele using whole-cell patch-clamp analysis of heterologously expressed recombinant human SCN1A. One previously reported GEFS+ mutation (I1656M) and an additional novel allele (R1657C), both affecting residues in a voltage-sensing S4 segment, exhibited a similar depolarizing shift in the voltage dependence of activation. Additionally, R1657C showed a 50% reduction in current density and …