Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Neuroscience and Neurobiology

Using Fmri To Investigate The Potential Cause Of Inverse Oxygenation Reported In Fnirs Studies Of Motor Imagery, Androu Abdalmalak, Daniel Milej, David J. Cohen, Udunna Anazodo, Tracy Ssali, Mamadou Diop, Adrian M. Owen, Keith St. Lawrence Jan 2020

Using Fmri To Investigate The Potential Cause Of Inverse Oxygenation Reported In Fnirs Studies Of Motor Imagery, Androu Abdalmalak, Daniel Milej, David J. Cohen, Udunna Anazodo, Tracy Ssali, Mamadou Diop, Adrian M. Owen, Keith St. Lawrence

BrainsCAN Publications

© 2019 Elsevier B.V. Motor imagery (MI) is a commonly used cognitive task in brain–computer interface (BCI) applications because it produces reliable activity in motor-planning regions. However, a number of functional near-infrared spectroscopy (fNIRS) studies have reported the unexpected finding of inverse oxygenation: increased deoxyhemoglobin and decreased oxyhemoglobin during task periods. This finding questions the reliability of fNIRS for BCI applications given that MI activation should result in a focal increase in blood oxygenation. In an attempt to elucidate this phenomenon, fMRI and fNIRS data were acquired on 15 healthy participants performing a MI task. The fMRI data provided global …


Resting State Functional Network Disruptions In A Kainic Acid Model Of Temporal Lobe Epilepsy., Ravnoor Singh Gill, Seyed M Mirsattari, L Stan Leung Jan 2017

Resting State Functional Network Disruptions In A Kainic Acid Model Of Temporal Lobe Epilepsy., Ravnoor Singh Gill, Seyed M Mirsattari, L Stan Leung

Physiology and Pharmacology Publications

We studied the graph topological properties of brain networks derived from resting-state functional magnetic resonance imaging in a kainic acid induced model of temporal lobe epilepsy (TLE) in rats. Functional connectivity was determined by temporal correlation of the resting-state Blood Oxygen Level Dependent (BOLD) signals between two brain regions during 1.5% and 2% isoflurane, and analyzed as networks in epileptic and control rats. Graph theoretical analysis revealed a significant increase in functional connectivity between brain areas in epileptic than control rats, and the connected brain areas could be categorized as a limbic network and a default mode network (DMN). The …