Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Theses and Dissertations--Physiology

Discipline
Keyword
Publication Year

Articles 1 - 17 of 17

Full-Text Articles in Neuroscience and Neurobiology

Effects Of Traumatic Brain Injury On The Intestinal Tract And Gut Microbiome, Anthony Desana Jan 2023

Effects Of Traumatic Brain Injury On The Intestinal Tract And Gut Microbiome, Anthony Desana

Theses and Dissertations--Physiology

Traumatic brain injury (TBI) initiates not only complex neurovascular and glial changes within the brain but also pathophysiological responses that extend beyond the central nervous system. The peripheral response to TBI has become an intensive area of research, as these systemic perturbations can induce dysfunction in multiple organ systems. As there are no approved therapeutics for TBI, it is imperative that we investigate the peripheral response to TBI to identify targets for future intervention. Of particular interest is the gastrointestinal (GI) system. Even in the absence of polytrauma, brain-injured individuals are at increased risk of suffering from GI-related morbidity and …


Alzheimer’S Disease Genetics And Short-Chain Fatty Acid Treatment In Studies Of The Murine Gut Microbiome, Diana Zajac Jan 2023

Alzheimer’S Disease Genetics And Short-Chain Fatty Acid Treatment In Studies Of The Murine Gut Microbiome, Diana Zajac

Theses and Dissertations--Physiology

Elucidating the relationship of the gut microbiome in Alzheimer's Disease (AD) risk and pathogenesis is an area of intense interest. Since 60 to 80% of AD risk is related to genetics and APOE alleles represent the most impactful genetic risk factors for AD, their mechanism(s) of action are under intense scrutiny.

First, I conducted a study on APOE targeted replacement mice to investigate the impact of APOE alleles on the murine gut microbiome. The relative abundance of bacteria from the family Ruminococacceae and related genera increased with APOE2 status. The relative abundance of the class Erysipelotrichia increased with APOE4 status, …


Clinical And Biological Factors Determine Spinal Cord Injury Outcomes: Liquor To Lipids, Ethan Glaser Jan 2023

Clinical And Biological Factors Determine Spinal Cord Injury Outcomes: Liquor To Lipids, Ethan Glaser

Theses and Dissertations--Physiology

Spinal cord injuries (SCI) are debilitating and life altering events that can lead to permanent motor and sensory loss. SCI outcomes are impacted by both clinical factors such as blood alcohol content (BAC) at the time of injury as well as biological factors like the lipid-rich myelin debris that accumulates in the injury site. Both clinical and biological factors contribute to SCI recovery, impacting neuroinflammation, locomotor recovery, and histopathology. The purpose of the studies described here is to investigate the role of acute alcohol intoxication and intracellular lipid processing pathways on SCI outcomes in a rodent model.

An elevated BAC …


An Investigation Of Hhv6'S Impact On The Cognitive Progression And Microglial Changes In An Alzheimer's Disease Cohort, Charles E. Seaks Jan 2022

An Investigation Of Hhv6'S Impact On The Cognitive Progression And Microglial Changes In An Alzheimer's Disease Cohort, Charles E. Seaks

Theses and Dissertations--Physiology

The role of herpesviruses and, more specifically, HHV6 in the development of Alzheimer’s disease (AD) and associated cognitive decline is still being investigated. High ubiquity and prevalence in the population have led to a high degree of skepticism about HHV6 as a potential contributor to cognitive decline and dementias. However, recent evidence related to another herpesvirus, herpes simplex virus 1, suggests that reactivation, not carriage, of the virus may be the key factor to explain the dissonance between the virus’ ubiquity and contributions to dementias. With that in mind, we set out to assess cases from the Sanders-Brown Center on …


Apoe Genotype And Cerebral Glucose Metabolism: A Multi-Omics Approach, Holden C. Williams Jan 2022

Apoe Genotype And Cerebral Glucose Metabolism: A Multi-Omics Approach, Holden C. Williams

Theses and Dissertations--Physiology

Apolipoprotein E (APOE) is encoded by the APOE gene, present in humans as three main isoforms (E2, E3, and E4). E4 carriers face up to a 15-fold increased risk for developing late-onset Alzheimer’s disease (AD), while E2 carriers are protected. Understanding the risk conferred by E4 has been an extensive research focus for nearly three decades, but the exact mechanism has yet to be proven. Many studies have demonstrated attenuated roles of E4 in classical hallmarks of AD, notably amyloid processing and neurofibrillary formation, which normally present later in disease progression. How APOE influences hallmarks that present much earlier are …


Uncovering The Role Of Apoe4 On Alzheimer’S Disease-Related Neuroinflammation, Courtney Marie Kloske Jan 2022

Uncovering The Role Of Apoe4 On Alzheimer’S Disease-Related Neuroinflammation, Courtney Marie Kloske

Theses and Dissertations--Physiology

Alzheimer’s disease (AD) is the most common neurodegenerative disease and is characterized by two hallmark pathologies: amyloid-beta plaques (Ab plaques) and hyperphosphorylated, aggregated tau tangles. These pathologies are typically accompanied by the presence of neuroinflammation which is primarily mediated by microglia. Interestingly, several genetic risk factors that increase the risk of AD also have direct impacts on neuroinflammation. Of interest, Apolipoprotein E (ApoE) is the largest genetic risk factor for AD. ApoE has three isoforms- E4 confers an increased risk for AD, E3 is considered the “control” phenotype, and E2 is protective against AD. E4 plays a role in virtually …


Myelin, Cpla2, And Azithromycin: Modulation Of Macrophage Activation In Spinal Cord Injury Inflammation, Timothy J. Kopper Jan 2021

Myelin, Cpla2, And Azithromycin: Modulation Of Macrophage Activation In Spinal Cord Injury Inflammation, Timothy J. Kopper

Theses and Dissertations--Physiology

Spinal cord injury (SCI) produces a chronic inflammatory state primarily mediated by macrophages consisting of resident microglia and infiltrating monocytes. These chronically activated SCI macrophages adopt a pro-inflammatory, pathological state that continues to cause additional damage after the initial injury and inhibits recovery. While the roles of macrophages in SCI pathophysiology are well documented, the factors contributing to this maladaptive response are poorly understood. Here, we identify the detrimental effects of myelin debris on macrophage physiology and demonstrate a novel, activation state-dependent role for cytosolic phospholipase-A2 (cPLA2) in myelin- mediated potentiation of pro-inflammatory macrophage activation. Macrophage- mediated inflammatory …


Ceramide-Enriched Extracellular Vesicles: A Role In Enhancing Amyloid-Beta Neurotoxicity And Mitochondrial Damage In Alzheimer’S Disease, Ahmed Elsherbini Jan 2020

Ceramide-Enriched Extracellular Vesicles: A Role In Enhancing Amyloid-Beta Neurotoxicity And Mitochondrial Damage In Alzheimer’S Disease, Ahmed Elsherbini

Theses and Dissertations--Physiology

Alzheimer’s disease (AD) is an age-dependent, progressive, neurodegenerative disorder that is characterized clinically by the impairment of cognitive functions concomitant with behavioral and personality changes. AD is associated with distinct pathological hallmarks, namely, intracellular neurofibrillary tangles comprised of hyperphosphorylated tau protein, extracellular amyloid beta (Aβ) plaques, and marked brain atrophy. Besides their main role as the core component of amyloid plaques, oligomeric Aβ have been shown to be neurotoxic. The exact mechanism of Aβ neurotoxicity is yet to be elucidated.

Recently, a pathogenic function of small extracellular vesicles- also known as exosomes- has been proposed, suggesting that exosomes can transfer …


Apoe As A Metabolic Regulator In Humans, Mice, And Astrocytes, Brandon C. Farmer Jan 2020

Apoe As A Metabolic Regulator In Humans, Mice, And Astrocytes, Brandon C. Farmer

Theses and Dissertations--Physiology

Altered metabolic pathways appear to play central roles in the pathophysiology of late-onset Alzheimer’s disease (AD). Carrier status of the E4 allele of the APOE gene is the strongest genetic risk factor for late-onset AD, and increasing evidence suggests that E4 carriers may be at an increased risk for neurodegeneration based on inherent metabolic impairments. A new appreciation is forming for the role of APOE in cerebral metabolism, and how nutritional factors may impact this role. In chapter 1, the literature on nutritional interventions in E4 carriers aimed at mitigating disease risk is reviewed. Studies investigating the mechanism by which …


Targeting Maladaptive Plasticity After Spinal Cord Injury To Prevent The Development Of Autonomic Dysreflexia, Khalid C. Eldahan Jan 2019

Targeting Maladaptive Plasticity After Spinal Cord Injury To Prevent The Development Of Autonomic Dysreflexia, Khalid C. Eldahan

Theses and Dissertations--Physiology

Vital autonomic and cardiovascular functions are susceptible to dysfunction after spinal cord injury (SCI), with cardiovascular dysregulation contributing to morbidity and mortality in the SCI population. Autonomic dysreflexia (AD) is a condition that develops after injury to the sixth thoracic spinal segment or higher and is characterized by potentially dangerous and volatile surges in arterial pressure often accompanied with irregular heart rate, headache, sweating, flushing of the skin, and nasal congestion. These symptoms occur in response to abnormal outflow of sympathetic activity from the decentralized spinal cord typically triggered by noxious, yet unperceived nociceptive stimulation beneath the level of lesion. …


Alterations In Gabaergic Nts Neuron Function In Association With Tle And Sudep, Isabel Diane Derera Jan 2018

Alterations In Gabaergic Nts Neuron Function In Association With Tle And Sudep, Isabel Diane Derera

Theses and Dissertations--Physiology

Epilepsy is a neurological disorder that is characterized by aberrant electrical activity in the brain resulting in at least two unprovoked seizures over a period longer than 24 hours. Approximately 60% of individuals with epilepsy are diagnosed with temporal lobe epilepsy (TLE) and about one third of those individuals do not respond well to anti-seizure medications. This places those individuals at high risk for sudden unexpected death in epilepsy (SUDEP). SUDEP is defined as when an individual with epilepsy, who is otherwise healthy, dies suddenly and unexpectedly for unknown reasons. SUDEP is one of the leading causes of death in …


Insulin-Like Growth Factor-1 Overexpression Mediates Hippocampal Remodeling And Plasticity Following Tbi, Erica Latrice Littlejohn Jan 2018

Insulin-Like Growth Factor-1 Overexpression Mediates Hippocampal Remodeling And Plasticity Following Tbi, Erica Latrice Littlejohn

Theses and Dissertations--Physiology

Every year over 2.5 million traumatic brain injuries (TBI) occur and are the leading cause of death and disability among adolescents. There are no approved treatments for TBI. Survivors suffer from persistent cognitive impairment due to posttraumatic tissue damage and disruption of neural networks which significantly detract from their quality of life. Posttraumatic cognitive impairment depends in part on the brain's limited ability to repair or replace damaged cells. Immature neurons in the hippocampus dentate gyrus, a brain region required for learning and memory, are particularly vulnerable to TBI. Insulin-like growth factor-1 (IGF1) is a potential therapeutic for TBI because …


Mitochondrial Transplantation After Spinal Cord Injury: Effects On Tissue Bioenergetics And Functional Neuroprotection, Jenna L. Gollihue Jan 2017

Mitochondrial Transplantation After Spinal Cord Injury: Effects On Tissue Bioenergetics And Functional Neuroprotection, Jenna L. Gollihue

Theses and Dissertations--Physiology

Contusion spinal cord injury (SCI) results in devastating life-long debilitation in which there are currently no effective treatments. The primary injury site presents a complex environment marked by subsequent secondary pathophysiological cascades involving excessive reactive oxygen and nitrogen species (ROS/RNS) production, glutamate-induced excitotoxicity, calcium dysregulation, and delayed neuronal apoptosis. Many of these cascades involve mitochondrial dysfunction, thus a single mitochondrial-centric therapy that targets a variety of these factors could be far reaching in its potential benefits after SCI. As such, this dissertation examines whether transplantation of exogenous mitochondria after SCI can attenuate secondary injury cascades to decrease the spread and …


Targeting Methylglyoxal And Ppar Gamma To Alleviate Neuropathic Pain Associated With Type 2 Diabetes, Ryan B. Griggs Jan 2015

Targeting Methylglyoxal And Ppar Gamma To Alleviate Neuropathic Pain Associated With Type 2 Diabetes, Ryan B. Griggs

Theses and Dissertations--Physiology

Neuropathic pain affects up to 50% of the 29 million diabetic patients in the United States. Neuropathic pain in diabetes manifests as a disease of the peripheral and central nervous systems. The prevalence of type 2 diabetes is far greater than type 1 (90%), yet the overwhelming focus on type 1 models this has left the mechanisms of pain in type 2 diabetes largely unknown. Therefore I aimed to improve the current mechanistic understanding of pain associated with type 2 diabetes using two preclinical rodent models: Zucker Diabetic Fatty rats and db/db mice. In addition, I highlight the translational importance …


Injury Establishes Constitutive Μ-Opioid Receptor Activity Leading To Lasting Endogenous Analgesia And Dependence, Gregory F. Corder Jan 2013

Injury Establishes Constitutive Μ-Opioid Receptor Activity Leading To Lasting Endogenous Analgesia And Dependence, Gregory F. Corder

Theses and Dissertations--Physiology

Injury causes increased pain sensation in humans and animals but the mechanisms underlying the emergence of persistent pathological pain states, which arise in the absence of on-going physical damage, are unclear. Therefore, elucidating the physiological regulation of such intractable pain is of exceptional biomedical importance. It is well known that endogenous activation of µ-opioid receptors (MORs) provides relief from acute pain but the consequences of prolonged endogenous opioidergic signaling have not been considered. Here we test the hypothesis that the intrinsic mechanisms of MOR signaling promote pathological sensitization of pain circuits in the spinal cord. We found that tissue inflammation …


Nmda Receptors In The Dorsal Vagal Complex Of Normal And Diabetic Mice, Eva C. Bach Jan 2013

Nmda Receptors In The Dorsal Vagal Complex Of Normal And Diabetic Mice, Eva C. Bach

Theses and Dissertations--Physiology

The dorsal vagal complex (DVC), containing the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus nerve (DMV), plays a pivotal role in autonomic regulation. Afferent fibers from peripheral organs and higher brain centers synapse in the NTS, which integrates these synaptic connections as well as information from systemically circulating hormones and metabolites. The integrated information is relayed to the dorsal motor nucleus of the vagus nerve (DMV), which in turn, projects motor fibers to elicit parasympathetic control of digestive and other viscera. Physiological functions mediated by the DVC are disrupted in diabetic patients and …


The Role Of Macrophages In Olfactory Neurogenesis, Aaron S. Borders Jan 2007

The Role Of Macrophages In Olfactory Neurogenesis, Aaron S. Borders

Theses and Dissertations--Physiology

Olfactory sensory neurons (OSNs) undergo continual degeneration and replacement throughout life, a cycle that can be synchronized experimentally by performing olfactory bulbectomy (OBX). OBX induces apoptosis of mature OSNs, which is followed by an increase in the proliferation of progenitor basal cells. Macrophages, functionally diverse immune effector cells, phagocytose the apoptotic OSNs and regulate the proliferation of basal cells. This provides an advantageous environment to study how macrophages regulate neuronal death, proliferation, and replacement.

The purpose of this dissertation was to identify the cellular and molecular mechanisms by which macrophages regulate the degeneration/proliferation cycle of OSNs. Macrophages were selectively depleted …