Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Neuroscience and Neurobiology

Effect Of Dorsal Quadrant Or Ventral Quadrant Spinal Cord Injury On Gait Features During Locomotion., Anya Nicole Trell Aug 2022

Effect Of Dorsal Quadrant Or Ventral Quadrant Spinal Cord Injury On Gait Features During Locomotion., Anya Nicole Trell

Electronic Theses and Dissertations

In the Unites States, approximately 1.5 million people currently have a spinal cord injury and suffer permanent sensory and motor loss due to the disruption of the spinal cord. Due to the significant morbidity, it is vital to understand the functional impact of disrupting neural descending pathways that modulate spinal neurons involved in intermuscular coordination critical for gait behaviors. Tasks that are more difficult require additional input from these neural pathways; therefore, fourteen feline subjects were familiarized with level overground locomotion and stair descent gait tasks. After collection of baseline kinematic data, the subjects received either a dorsal or ventral …


Gradient Generating Microfluidic Coculture System For Disease Modeling And Neural Development, Phaneendra Chennampally Dec 2021

Gradient Generating Microfluidic Coculture System For Disease Modeling And Neural Development, Phaneendra Chennampally

Electronic Theses and Dissertations

Cellular microenvironment or cell niche plays an important role in developmental biology and disease pathophysiology. Physical or chemical signals in microenvironment drive the cellular activity. These signaling molecules are generated from the surrounding cells/tissues as part of intercellular communication; a fundamental property of a cell. Dynamic profile of these signaling molecules in the microenvironment plays a pivotal role in transfer of molecular information from cell to cell in disease proliferation or fate determination. Recapitulating these signaling cues in an in vitro study is difficult to achieve using standard cell culture techniques. However microfluidic systems are capable of addressing these issues, …


Longitudinal Tracking Of Physiological State With Electromyographic Signals., Robert Warren Stallard May 2018

Longitudinal Tracking Of Physiological State With Electromyographic Signals., Robert Warren Stallard

Electronic Theses and Dissertations

Electrophysiological measurements have been used in recent history to classify instantaneous physiological configurations, e.g., hand gestures. This work investigates the feasibility of working with changes in physiological configurations over time (i.e., longitudinally) using a variety of algorithms from the machine learning domain. We demonstrate a high degree of classification accuracy for a binary classification problem derived from electromyography measurements before and after a 35-day bedrest. The problem difficulty is increased with a more dynamic experiment testing for changes in astronaut sensorimotor performance by taking electromyography and force plate measurements before, during, and after a jump from a small platform. A …


Microengineering The Neural Tube, Christopher Demers Aug 2015

Microengineering The Neural Tube, Christopher Demers

Electronic Theses and Dissertations

Early embryonic development is a complex and highly regulated orchestra of instructive cues that collectively guide naïve stem cells towards progressively more specialized fates. In the neural tube, the precursor structure to the brain and spinal cord, these signals emanate from ‘organizing centers’ surrounding the neural tube. These organizing centers send out soluble cues or morphogens that diffuse tens to hundreds of microns to recipient cells residing in the neural tube. Re-creating this dynamic landscape of cues in vitro is impossible using standard cell culture tools and techniques. However, microfluidics is perfectly suited to fill this gap, allowing precise control …


Towards Closed-Loop Deep Brain Stimulation: Behavior Recognition From Human Stn, Soroush Niketeghad Jan 2015

Towards Closed-Loop Deep Brain Stimulation: Behavior Recognition From Human Stn, Soroush Niketeghad

Electronic Theses and Dissertations

Deep brain stimulation (DBS) provides significant therapeutic benefit for movement disorders such as Parkinson’s disease (PD). Current DBS devices lack real-time feedback (thus are open loop) and stimulation parameters are adjusted during scheduled visits with a clinician. A closed-loop DBS system may reduce power consumption and side effects by adjusting stimulation parameters based on patient’s behavior. Thus behavior detection is a major step in designing such systems. Various physiological signals can be used to recognize the behaviors. Subthalamic Nucleus (STN) Local field Potential (LFP) is a great candidate signal for the neural feedback, because it can be recorded from the …