Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Computational Neuroscience

2015

Object recognition

Articles 1 - 2 of 2

Full-Text Articles in Neuroscience and Neurobiology

A Recurrent Multilayer Model With Hebbian Learning And Intrinsic Plasticity Leads To Invariant Object Recognition And Biologically Plausible Receptive Fields, Michael Teichmann, Fred H. Hamker May 2015

A Recurrent Multilayer Model With Hebbian Learning And Intrinsic Plasticity Leads To Invariant Object Recognition And Biologically Plausible Receptive Fields, Michael Teichmann, Fred H. Hamker

MODVIS Workshop

Much effort has been spent to develop biologically plausible models for different aspects of the processing in the visual cortex. However, most of these models are not investigated with respect to the functionality of the neural code for the purpose of object recognition comparable to the framework of deep learning in the machine learning community.
We developed a model of V1 and V2 based on anatomical evidence of the layered architecture, using excitatory and inhibitory neurons where the connectivity to each neuron is learned in parallel. We address learning by three different mechanisms of plasticity: intrinsic plasticity, Hebbian learning with …


Object Recognition And Visual Search With A Physiologically Grounded Model Of Visual Attention, Frederik Beuth, Fred H. Hamker May 2015

Object Recognition And Visual Search With A Physiologically Grounded Model Of Visual Attention, Frederik Beuth, Fred H. Hamker

MODVIS Workshop

Visual attention models can explain a rich set of physiological data (Reynolds & Heeger, 2009, Neuron), but can rarely link these findings to real-world tasks. Here, we would like to narrow this gap with a novel, physiologically grounded model of visual attention by demonstrating its objects recognition abilities in noisy scenes.

To base the model on physiological data, we used a recently developed microcircuit model of visual attention (Beuth & Hamker, in revision, Vision Res) which explains a large set of attention experiments, e.g. biased competition, modulation of contrast response functions, tuning curves, and surround suppression. Objects are represented by …