Open Access. Powered by Scholars. Published by Universities.®

Environmental Microbiology and Microbial Ecology Commons

Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology

Dartmouth College

Pseudomonas aeruginosa

Articles 1 - 2 of 2

Full-Text Articles in Environmental Microbiology and Microbial Ecology

Causes And Consequences Of Lasr Mutant Selection In Pseudomonas Aeruginosa Populations, Dallas L. Mould May 2023

Causes And Consequences Of Lasr Mutant Selection In Pseudomonas Aeruginosa Populations, Dallas L. Mould

Dartmouth College Ph.D Dissertations

Change is the only constant in life, and these changes, though random in nature, can have consequences. Quorum sensing is heterogeneous in phenotype and prone to negative selection. In P. aeruginosa, the regulator LasR is frequently non-functional in phylogenetically diverse isolates. Through repeated experimental evolution and mathematical modeling, we show that differences in growth enable lasR mutant evolutionary success and this requires a system enabling metabolic choices, known as carbon catabolite repression (or catabolite repression). The differences in catabolite repression between wild type and lasR mutants enable altered metabolite preferences, and the resulting differences in metabolic states enable intraspecies …


Deletion Mutant Library For Investigation Of Functional Outputs Of Cyclic Diguanylate Metabolism In Pseudomonas Aeruginosa Pa14, Dae-Gon Ha, Megan E. Richman, George A. O'Toole Mar 2014

Deletion Mutant Library For Investigation Of Functional Outputs Of Cyclic Diguanylate Metabolism In Pseudomonas Aeruginosa Pa14, Dae-Gon Ha, Megan E. Richman, George A. O'Toole

Dartmouth Scholarship

We constructed a library of in-frame deletion mutants targeting each gene in Pseudomonas aeruginosa PA14 predicted to participate in cyclic di-GMP (c-di-GMP) metabolism (biosynthesis or degradation) to provide a toolkit to assist investigators studying c-di-GMP-mediated regulation by this microbe. We present phenotypic assessments of each mutant, including biofilm formation, exopolysaccharide (EPS) production, swimming motility, swarming motility, and twitch motility, as a means to initially characterize these mutants and to demonstrate the potential utility of this library.