Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Microbiology

Antimicrobial Efficacy And Safety Of A Novel Gas Plasma-Activated Catheter Lock Solution, Sudhir Bhatt, Poonam Mehta, Chen Chen, Dayle A. Daines, Leonard A. Mermel, Hai-Lan Chen, Michael G. Kong Aug 2018

Antimicrobial Efficacy And Safety Of A Novel Gas Plasma-Activated Catheter Lock Solution, Sudhir Bhatt, Poonam Mehta, Chen Chen, Dayle A. Daines, Leonard A. Mermel, Hai-Lan Chen, Michael G. Kong

Bioelectrics Publications

Antimicrobial lock solutions are important for prevention of microbial colonization and infection of long-term central venous catheters. We investigated the efficacy and safety of a novel antibiotic-free lock solution formed from gas plasma-activated disinfectant (PAD). Using a luminal biofilm model, viable cells of methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Candida albicans in mature biofilms were reduced by 6 to 8 orders of magnitude with a PAD lock for 60 min. Subsequent 24-h incubation of PAD-treated samples resulted in no detectable regrowth of viable bacteria or fungi. As a comparison, the use of a minocycline-EDTA-ethanol lock solution for 60 …


Mechanism Of Virus Inactivation By Cold Atmospheric-Pressure Plasma And Plasma-Activated Water, Li Guo, Ruobing Xu, Lu Gou, Zhichao Liu, Yiming Zhao, Dingxin Liu, Lei Zhang, Hailan Chen, Michael G. Kong Jun 2018

Mechanism Of Virus Inactivation By Cold Atmospheric-Pressure Plasma And Plasma-Activated Water, Li Guo, Ruobing Xu, Lu Gou, Zhichao Liu, Yiming Zhao, Dingxin Liu, Lei Zhang, Hailan Chen, Michael G. Kong

Bioelectrics Publications

ABSTRACT Viruses cause serious pathogenic contamination that severely affects the environment and human health. Cold atmospheric-pressure plasma efficiently inactivates pathogenic bacteria; however, the mechanism of virus inactivation by plasma is not fully understood. In this study, surface plasma in argon mixed with 1% air and plasma-activated water was used to treat water containing bacteriophages. Both agents efficiently inactivated bacteriophages T4, ϕ174, and MS2 in a time-dependent manner. Prolonged storage had marginal effects on the antiviral activity of plasma-activated water. DNA and protein analysis revealed that the reactive species generated by plasma damaged both nucleic acids and proteins, consistent with the …


Gas Plasma Pre-Treatment Increases Antibiotic Sensitivity And Persister Eradication In Methicillin-Resistant Staphylococcus Aureus, Li Guo, Ruobing Xu, Yiming Zhao, Dingxin Liu, Zhijie Liu, Xiaohua Wang, Hailan Chen, Michael G. Kong Mar 2018

Gas Plasma Pre-Treatment Increases Antibiotic Sensitivity And Persister Eradication In Methicillin-Resistant Staphylococcus Aureus, Li Guo, Ruobing Xu, Yiming Zhao, Dingxin Liu, Zhijie Liu, Xiaohua Wang, Hailan Chen, Michael G. Kong

Bioelectrics Publications

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious nosocomial infections, and recurrent MRSA infections primarily result from the survival of persister cells after antibiotic treatment. Gas plasma, a novel source of ROS (reactive oxygen species) and RNS (reactive nitrogen species) generation, not only inactivates pathogenic microbes but also restore the sensitivity of MRSA to antibiotics. This study further found that sublethal treatment of MRSA with both plasma and plasma-activated saline increased the antibiotic sensitivity and promoted the eradication of persister cells by tetracycline, gentamycin, clindamycin, chloramphenicol, ciprofloxacin, rifampicin, and vancomycin. The short-lived ROS and RNS generated by plasma …


Cell Fragmentation And Permeabilization By A 1 Ns Pulse Driven Triple-Point Electrode, Enbo Yang, Joy Li, Michael Cho, Shu Xiao Jan 2018

Cell Fragmentation And Permeabilization By A 1 Ns Pulse Driven Triple-Point Electrode, Enbo Yang, Joy Li, Michael Cho, Shu Xiao

Bioelectrics Publications

Ultrashort electric pulses (ns-ps) are useful in gaining understanding as to how pulsed electric fields act upon biological cells, but the electric field intensity to induce biological responses is typically higher than longer pulses and therefore a high voltage ultrashort pulse generator is required. To deliver 1 ns pulses with sufficient electric field but at a relatively low voltage, we used a glass-encapsulated tungsten wire triple-point electrode (TPE) at the interface among glass, tungsten wire, and water when it is immersed in water. A high electric field (2MV/cm) can be created when pulses are applied. However, such a high electric …