Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Microbiology

Metabolic Heterogeneity And The Roles Of Cody And Ccpa In Central Metabolism And S. Aureus Biofilm Formation., Logan L. Bulock Dec 2021

Metabolic Heterogeneity And The Roles Of Cody And Ccpa In Central Metabolism And S. Aureus Biofilm Formation., Logan L. Bulock

Theses & Dissertations

Staphylococcus aureus is a metabolically versatile human pathogen, causing disease in many areas of the body. Its versatility can be attributed to the fact that it utilizes a variety of tools to adapt to many different environments, including toxins to scavenge from the host and multiple transporters to compete for its preferred carbon sources. S. aureus can also survive in harsh conditions through biofilm development, which are notoriously recalcitrant to antibiotics and immune defenses. Biofilms exhibit marked heterogeneity, with division of labor for production of matrix components and differential gene expression among various niches within the biofilm.

In this study, …


Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Bryan J. Culbertson, Jaymie Krone, Erastus Gatebe, Norbert C. Furumo, Steven L. Daniel Oct 2007

Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Bryan J. Culbertson, Jaymie Krone, Erastus Gatebe, Norbert C. Furumo, Steven L. Daniel

Steven L. Daniel

The impact of various supplemental carbon sources (oxalate, glyoxylate, glycolate, pyruvate, formate, malate, acetate, and succinate) on growth and oxalate formation (i.e., oxalogenesis) by Sclerotinia sclerotiorum was studied. With isolates D-E7, 105, W-B10, and Arg-L of S. sclerotiorum, growth in an undefined broth medium (0.1% soytone; pH 5) with 25 mM glucose and 25 mM supplemental carbon source was increased by the addition of malate and succinate. Oxalate accumulation occurred in the presence of glucose and a supplemental carbon source, with malate, acetate, and succinate supporting the most oxalate synthesis. With S. sclerotiorum Arg-L, oxalate-to-biomass ratios, an indicator of oxalogenic …


Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Bryan J. Culbertson, Jaymie Krone, Erastus Gatebe, Norbert C. Furumo, Steven L. Daniel Oct 2007

Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Bryan J. Culbertson, Jaymie Krone, Erastus Gatebe, Norbert C. Furumo, Steven L. Daniel

Faculty Research & Creative Activity

The impact of various supplemental carbon sources (oxalate, glyoxylate, glycolate, pyruvate, formate, malate, acetate, and succinate) on growth and oxalate formation (i.e., oxalogenesis) by Sclerotinia sclerotiorum was studied. With isolates D-E7, 105, W-B10, and Arg-L of S. sclerotiorum, growth in an undefined broth medium (0.1% soytone; pH 5) with 25 mM glucose and 25 mM supplemental carbon source was increased by the addition of malate and succinate. Oxalate accumulation occurred in the presence of glucose and a supplemental carbon source, with malate, acetate, and succinate supporting the most oxalate synthesis. With S. sclerotiorum Arg-L, oxalate-to-biomass ratios, an indicator of oxalogenic …


Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Steven L. Daniel, Bryan J. Culbertson, Jaymie Krone, Norbert Furumo Oct 2007

Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Steven L. Daniel, Bryan J. Culbertson, Jaymie Krone, Norbert Furumo

Faculty Research & Creative Activity

The impact of various supplemental carbon sources (oxalate, glyoxylate, glycolate, pyruvate, formate, malate, acetate, and succinate) on growth and oxalate formation (i.e., oxalogenesis) by Sclerotinia sclerotiorum was studied. With isolates D-E7, 105, W-B10, and Arg-L of S. sclerotiorum, growth in an undefined broth medium (0.1% soytone; pH 5) with 25 mM glucose and 25 mM supplemental carbon source was increased by the addition of malate and succinate. Oxalate accumulation occurred in the presence of glucose and a supplemental carbon source, with malate, acetate, and succinate supporting the most oxalate synthesis. With S. sclerotiorum Arg-L, oxalate-to-biomass ratios, an indicator of oxalogenic …


Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Bryan Culbertson, Jaymie Krone, Erastus Gatebe, Norbert Furumo, Steven Daniel Oct 2007

Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Bryan Culbertson, Jaymie Krone, Erastus Gatebe, Norbert Furumo, Steven Daniel

Faculty Research & Creative Activity

The impact of various supplemental carbon sources (oxalate, glyoxylate, glycolate, pyruvate, formate, malate, acetate, and succinate) on growth and oxalate formation (i.e., oxalogenesis) by Sclerotinia sclerotiorum was studied. With isolates D-E7, 105, W-B10, and Arg-L of S. sclerotiorum, growth in an undefined broth medium (0.1% soytone; pH 5) with 25 mM glucose and 25 mM supplemental carbon source was increased by the addition of malate and succinate. Oxalate accumulation occurred in the presence of glucose and a supplemental carbon source, with malate, acetate, and succinate supporting the most oxalate synthesis. With S. sclerotiorum Arg-L, oxalate-to-biomass ratios, an indicator of oxalogenic …