Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Microbiology

Characterization Of Genetic Pathways Involved In Resistance To A Novel Antifungal Peptide, Kayla L. Haberman Aug 2022

Characterization Of Genetic Pathways Involved In Resistance To A Novel Antifungal Peptide, Kayla L. Haberman

Graduate Theses and Dissertations

Antibiotic resistance is increasing prevalence, particularly in Candida glabrata. This opportunistic pathogen is closely phylogenetically related to Saccharomyces cerevisiae; however, its characterization is limited. C. glabrata is only second to Candida albicans as a fungal pathogen in immunocompromised patients. Commonly resistant to azoles, the most common fungal therapy, it has become costly and challenging to treat. A histatin 5 derived antifungal peptide, KM29, has a high degree of efficacy in Candida species and S. cerevisiae. The objective of this work is to advance our understanding of the mechanism of action of KM29 against C. glabrata. Previous work in the lab …


Dissecting The Mechanism Of Action Of A Novel Antifungal Peptide, Cody Bullock Aug 2018

Dissecting The Mechanism Of Action Of A Novel Antifungal Peptide, Cody Bullock

Graduate Theses and Dissertations

There is an urgent need for novel treatments for Candida infections. The utility of antimicrobial peptides for antifungal therapy has garnered interest in recent years. One promising family of peptides is the Histatins, a family of naturally-occurring peptides secreted into the oral cavity that display antimicrobial activity. Histatin 5 is a twenty-four amino acid peptide with strong antifungal activity. Studies from our laboratory have identified a small histatin-derived peptide, KM29, that yields fungicidal activity 10-fold greater than Histatin 5 against multiple Candida species. Our laboratory has focused on understanding the mechanism of action of KM29 to further develop it as …


Bioprospecting Deep-Sea Actinobacteria For Novel Anti-Infective Natural Products, Dongbo Xu, Linna Han, Chunhui Li, Qi Cao, Duolong Zhu, Nolan H. Barrett, Dedra Harmody, Jing Chen, Haining Zhu, Peter J. Mccarthy, Xingmin Sun, Guojun Wang Apr 2018

Bioprospecting Deep-Sea Actinobacteria For Novel Anti-Infective Natural Products, Dongbo Xu, Linna Han, Chunhui Li, Qi Cao, Duolong Zhu, Nolan H. Barrett, Dedra Harmody, Jing Chen, Haining Zhu, Peter J. Mccarthy, Xingmin Sun, Guojun Wang

Molecular and Cellular Biochemistry Faculty Publications

The global prevalence of drug resistance has created an urgent need for the discovery of novel anti-infective drugs. The major source of antibiotics in current clinical practice is terrestrial actinobacteria; the less-exploited deep-sea actinobacteria may serve as an unprecedented source of novel natural products. In this study, we evaluated 50 actinobacteria strains derived from diverse deep water sponges and environmental niches for their anti-microbial activities against a panel of pathogens including Candida albicans, Clostridium difficile, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA), and Pseudomonas aeruginosa. More than half of the tested strains (27) were identified as …


Antifungal Activity Of Lactobacillus Against Microsporum Canis, Microsporum Gypseum And Epidermophyton Floccosum, Jiahui Guo, Brid Brosnan, Ambrose Furey, Elke K. Arendt, Padraigin Murphy Mar 2012

Antifungal Activity Of Lactobacillus Against Microsporum Canis, Microsporum Gypseum And Epidermophyton Floccosum, Jiahui Guo, Brid Brosnan, Ambrose Furey, Elke K. Arendt, Padraigin Murphy

Department of Biological Sciences Publications

A total of 220 lactic acid bacteria isolates were screened for antifungal activity using Aspergillus fumigatus and Aspergillus niger as the target strains. Four Lactobacillus strains exhibited strong inhibitory activity on agar surfaces. All four were also identified as having strong inhibitory activity against the human pathogenic fungi Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. One of the four lactobacilli, namely Lb. reuteri ee1p exhibited the most inhibition against dermatophytes. Cell-free culture supernatants of Lb. reuteri ee1p and of the non-antifungal Lb. reuteri M13 were freeze-dried and used to access and compare antifungal activity in agar plate assays …