Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Microbiology

The Role Of Coagulase-Negative Staphylococcal Secreted Products On Staphylococcus Aureus And Staphylococcus Lugdunensis Infections, Denny Chin Apr 2022

The Role Of Coagulase-Negative Staphylococcal Secreted Products On Staphylococcus Aureus And Staphylococcus Lugdunensis Infections, Denny Chin

Electronic Thesis and Dissertation Repository

The Staphylococcus genus is comprised of over 40 bacterial species. The most well-studied species in this genus is the notorious human pathogen Staphylococcus aureus, a bacterium that produces coagulase among many other virulence factors. Since S. aureus is a major health burden and causes a plethora of diseases in humans, it has received significant attention and much research has been done to understand its biology to treat diseases caused by this pathogen. However, the coagulase-negative staphylococci (CoNS) make up most of the staphylococcal species and have received less attention since they are thought to have a lesser impact on …


Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung Aug 2011

Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung

Electronic Thesis and Dissertation Repository

The discovery of electrically conductive bacterial nanowires from a broad range of microbes provides completely new insights into microbial physiology. Shewanella oneidensis strain MR-1, a dissimilatory metal-reducing bacterium, produces extracellular bacterial nanowires up to tens of micrometers long, with a lateral dimension of ~10 nm. The Shewanella bacterial nanowires are efficient electrical conductors as revealed by scanning probe techniques such as CP-AFM and STM.

Direct electrical transport measurements along Shewanella nanowires reveal a measured nanowire resistivity on the order of 1 Ω∙cm. With electron transport rates up to 109/s at 100 mV, bacterial nanowires can serve as a …