Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Microbiology and Microbial Ecology

2007

Oxalate

Articles 1 - 3 of 3

Full-Text Articles in Microbiology

Impact Of Nutritional Supplements And Monosaccharides On Growth, Oxalate Accumulation, And Culture Ph By Sclerotinia Sclerotiorum, Steven L. Daniel, Bryan J. Culbertson, Norbert C. Furumo May 2007

Impact Of Nutritional Supplements And Monosaccharides On Growth, Oxalate Accumulation, And Culture Ph By Sclerotinia Sclerotiorum, Steven L. Daniel, Bryan J. Culbertson, Norbert C. Furumo

Steven L. Daniel

Sclerotinia sclerotiorum D-E7 was studied to determine the impact of nutritional supplements and monosaccharides on growth, oxalate accumulation, and culture pH in broth media (initial pH c. 5). Cultures with 0.1% nutritional supplement (tryptone, yeast extract, or soytone) yielded minimal growth, 2–3 mM oxalate, and a final culture pH of 4.2–4.8. In contrast, cultures with 0.1% nutritional supplement and 25 mM glucose yielded significant growth, minimal oxalate (<1 mM), and a final culture pH of 2.8–3.7. Similar trends were observed when glucose in 0.1% soytone cultures was replaced with 25 mM d-mannose, l-arabinose, or d-xylose. With 1% soytone-25 mM glucose cultures, growth and oxalate accumulation (∼21 mM) occurred with little change in initial pH. This was not the case with 1% soytone-250 mM glucose cultures; increased glucose levels resulted in a decrease in oxalate accumulation (∼7 mM) and in final culture pH (3.4). Time-course studies with these cultures revealed that oxalate accumulation was suppressed during growth when the culture pH dropped to <4. Overall, these results indicate that (1) the decrease in external pH (i.e. acidification) was independent of oxalate accumulation and (2) acidification coupled to glucose-dependent growth regulated oxalate accumulation by Sclerotinia sclerotiorum.


Impact Of Nutritional Supplements And Monosaccharides On Growth, Oxalate Accumulation, And Culture Ph By Sclerotinia Sclerotiorum, Steven Daniel, Bryan Culbertson, Norbert Furumo May 2007

Impact Of Nutritional Supplements And Monosaccharides On Growth, Oxalate Accumulation, And Culture Ph By Sclerotinia Sclerotiorum, Steven Daniel, Bryan Culbertson, Norbert Furumo

Faculty Research & Creative Activity

Sclerotinia sclerotiorum D-E7 was studied to determine the impact of nutritional supplements and monosaccharides on growth, oxalate accumulation, and culture pH in broth media (initial pH c. 5). Cultures with 0.1% nutritional supplement (tryptone, yeast extract, or soytone) yielded minimal growth, 2–3 mM oxalate, and a final culture pH of 4.2–4.8. In contrast, cultures with 0.1% nutritional supplement and 25 mM glucose yielded significant growth, minimal oxalate (<1 mM), and a final culture pH of 2.8–3.7. Similar trends were observed when glucose in 0.1% soytone cultures was replaced with 25 mM d-mannose, l-arabinose, or d-xylose. With 1% soytone-25 mM glucose cultures, growth and oxalate accumulation (∼21 mM) occurred with little change in initial pH. This was not the case with 1% soytone-250 mM glucose cultures; increased glucose levels resulted in a decrease in oxalate accumulation (∼7 mM) and in final culture pH (3.4). Time-course studies with these cultures revealed that oxalate accumulation was suppressed during growth when the culture pH dropped to <4. Overall, these results indicate that (1) the decrease in external pH (i.e. acidification) was independent of oxalate accumulation and (2) acidification coupled to glucose-dependent growth regulated oxalate accumulation by Sclerotinia sclerotiorum.


Impact Of Nutritional Supplements And Monosaccharides On Growth, Oxalate Accumulation, And Culture Ph By Sclerotinia Sclerotiorum, Steven L. Daniel, Bryan J. Culbertson, Norbert C. Furumo May 2007

Impact Of Nutritional Supplements And Monosaccharides On Growth, Oxalate Accumulation, And Culture Ph By Sclerotinia Sclerotiorum, Steven L. Daniel, Bryan J. Culbertson, Norbert C. Furumo

Faculty Research & Creative Activity

Sclerotinia sclerotiorum D-E7 was studied to determine the impact of nutritional supplements and monosaccharides on growth, oxalate accumulation, and culture pH in broth media (initial pH c. 5). Cultures with 0.1% nutritional supplement (tryptone, yeast extract, or soytone) yielded minimal growth, 2–3 mM oxalate, and a final culture pH of 4.2–4.8. In contrast, cultures with 0.1% nutritional supplement and 25 mM glucose yielded significant growth, minimal oxalate (<1 mM), and a final culture pH of 2.8–3.7. Similar trends were observed when glucose in 0.1% soytone cultures was replaced with 25 mM d-mannose, l-arabinose, or d-xylose. With 1% soytone-25 mM glucose cultures, growth and oxalate accumulation (∼21 mM) occurred with little change in initial pH. This was not the case with 1% soytone-250 mM glucose cultures; increased glucose levels resulted in a decrease in oxalate accumulation (∼7 mM) and in final culture pH (3.4). Time-course studies with these cultures revealed that oxalate accumulation was suppressed during growth when the culture pH dropped to <4. Overall, these results indicate that (1) the decrease in external pH (i.e. acidification) was independent of oxalate accumulation and (2) acidification coupled to glucose-dependent growth regulated oxalate accumulation by Sclerotinia sclerotiorum.