Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Microbiology and Microbial Ecology

2007

Cloning

Articles 1 - 2 of 2

Full-Text Articles in Microbiology

The Isolation And Characterization Of The Microbial Flora In The Alimentary Canal Of Gromphadorhina Portentosa Based On Rdna Sequences., Amy Renee Robertson Dec 2007

The Isolation And Characterization Of The Microbial Flora In The Alimentary Canal Of Gromphadorhina Portentosa Based On Rdna Sequences., Amy Renee Robertson

Electronic Theses and Dissertations

Multicellular organisms are not single individuals but carry a complex natural microflora with them. This complex's diversity and function can be considered a distinct ecosystem. Traditional methods of isolation and identification miss >90% of the actual diversity. This study uses the gut microflora of the Madagascar hissing roach, Gromphadorhina portentosa, as a model to examine this ecosystem. Isolated cultured bacteria were used to establish methods for identifying members of the microflora based on ribosomal RNA sequences. Universal primers for Eubacterial, Archaeal, and Eukaryotic 16s/18s rRNA were then used for PCR amplification of total DNA isolated from gut contents. Sequences …


N-Glycan Modification In Aspergillus Species, Elke Kainz, Andreas Gallmetzer, Christian Hatzl, Juergen H. Nett, Huijuan Li, Thorsten Schinko, Robert Pachlinger, Harald Berger, Yazmid Reyes-Dominguez, Andreas Bernreiter, Tillmann Gerngross, Stefan Wildt, Joseph Strauss Dec 2007

N-Glycan Modification In Aspergillus Species, Elke Kainz, Andreas Gallmetzer, Christian Hatzl, Juergen H. Nett, Huijuan Li, Thorsten Schinko, Robert Pachlinger, Harald Berger, Yazmid Reyes-Dominguez, Andreas Bernreiter, Tillmann Gerngross, Stefan Wildt, Joseph Strauss

Dartmouth Scholarship

The production by filamentous fungi of therapeutic glycoproteins intended for use in mammals is held back by the inherent difference in protein N-glycosylation and by the inability of the fungal cell to modify proteins with mammalian glycosylation structures. Here, we report protein N-glycan engineering in two Aspergillus species. We functionally expressed in the fungal hosts heterologous chimeric fusion proteins containing different localization peptides and catalytic domains. . This strategy allowed the isolation of a strain with a functional -1,2-mannosidase producing increased amounts of N-glycans of the Man 5 GlcNAc 2 type. This strain was further engineered by the introduction of …