Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Microbiology

Copper(Ii) And Silver(I)‑1,10‑Phenanthroline‑5,6‑Dione Complexes Interact With Double‑Stranded Dna: Further Evidence Of Their Apparent Multi‑Modal Activity Towards Pseudomonas Aeruginosa, Anna Clara Milesi Galdino, Lívia Viganor, Matheus Mendonça Pereira, Michael Devereux, Malachy Mccann, Marta Helena Branquinha, Zara Molphy, Sinéad O'Carroll, Conor Bain, Georgia Menounou, Andrew Kellett, André Luis Souza Dos Santos Jan 2022

Copper(Ii) And Silver(I)‑1,10‑Phenanthroline‑5,6‑Dione Complexes Interact With Double‑Stranded Dna: Further Evidence Of Their Apparent Multi‑Modal Activity Towards Pseudomonas Aeruginosa, Anna Clara Milesi Galdino, Lívia Viganor, Matheus Mendonça Pereira, Michael Devereux, Malachy Mccann, Marta Helena Branquinha, Zara Molphy, Sinéad O'Carroll, Conor Bain, Georgia Menounou, Andrew Kellett, André Luis Souza Dos Santos

Articles

Tackling microbial resistance requires continuous efforts for the development of new molecules with novel mechanisms of action and potent antimicrobial activity. Our group has previously identified metal-based compounds, [Ag(1,10-phenanthroline-5,6-dione)2]ClO4 (Ag-phendione) and [Cu(1,10-phenanthroline-5,6-dione)3](ClO4)2.4H2O (Cu-phendione), with efficient antimicrobial action against multidrug-resistant species. Herein, we investigated the ability of Ag-phendione and Cu-phendione to bind with double-stranded DNA using a combination of in silico and in vitro approaches. Molecular docking revealed that both phendione derivatives can interact with the DNA by hydrogen bonding, hydrophobic and electrostatic interactions. Cu-phendione exhibited the highest binding affinity to either major (− 7.9 kcal/mol) or minor (− 7.2 kcal/mol) …


Studies On The Interaction And Organization Of Bacterial Proteins On Membranes, Mariana Brena Jul 2019

Studies On The Interaction And Organization Of Bacterial Proteins On Membranes, Mariana Brena

Masters Theses

Bacteria have developed various means of secreting proteins that can enter the host cell membrane. In this work I focus on two systems: cholesterol-dependent cytolysins and Type III Secretion.

Cholesterol is a molecule that is critical for physiological processes and cell membrane function. Not only can improper regulation lead to disease, but also the role cholesterol plays in cell function indicates it is an important molecule to understand. In response to this need, probes have been developed that detect cholesterol molecules in membranes. However, it has been recently shown that there is a need for probes that only respond to …


Virulence Regulation In Pseudomonas Aeruginosa Via The Alginate Regulators, Algu And Algr, The Posttranscriptional Regulator, Rsma, And The Two-Component System, Algz/R, Sean Stacey Dec 2018

Virulence Regulation In Pseudomonas Aeruginosa Via The Alginate Regulators, Algu And Algr, The Posttranscriptional Regulator, Rsma, And The Two-Component System, Algz/R, Sean Stacey

Electronic Theses and Dissertations

Pseudomonas aeruginosa is a Gram-negative bacillus able to colonize a wide variety of environments. In the human host, P. aeruginosa can establish an acute infection or persist and create a chronic infection. P. aeruginosa is able to establish a niche and persist in human hosts by using a wide array of virulence factors used for: movement, killing host cells, and evading immune cells and antibiotics. Understanding virulence factors and their regulation has proved to be an important means of combating the morbidity and mortality of P. aeruginosa as well as the ever-increasing threat of drug resistance. By targeting virulence factors …


Characterization Of The Reconstituted And Native Pseudomonas Aeruginosa Type Iii Secretion System Translocon, Kathryn R. Monopoli Nov 2015

Characterization Of The Reconstituted And Native Pseudomonas Aeruginosa Type Iii Secretion System Translocon, Kathryn R. Monopoli

Masters Theses

The Type III Secretion (T3S) system is a system utilized by many pathogenic bacteria to inject proteins into host cells during an infection. Effector proteins enter the host cell by passing through the proteinaceous T3S translocon, which forms a pore on the host cell membrane. Pseudomonas aeruginosa is an opportunistic pathogen that utilizes the T3S system, and very little is known about how the P. aeruginosa translocon forms.

The proteins PopB and PopD are believed to assemble into the P. aeruginosa translocon. A pore-forming heterocomplex of PopB and PopD has been reconstituted in model membranes, however this heterocomplex has not …


Real-Time Study Of Multidrug Resistance Mechanism In Pseudomonas Aeruginosa Using Nanoparticle Optics And Single Live Cell Imaging, Sophia Vasou Kyriacou Apr 2003

Real-Time Study Of Multidrug Resistance Mechanism In Pseudomonas Aeruginosa Using Nanoparticle Optics And Single Live Cell Imaging, Sophia Vasou Kyriacou

Chemistry & Biochemistry Theses & Dissertations

This thesis centers on the study of the xenobiotic efflux system in Pseudomonas aeruginosa, which is a ubiquitous bacterium. It resists many structurally and functionally diverse substrates due to expression of Mex-extrusion pumps, including MexAB-OprM, MexCD-OprJ, MexEF-OprN and MexXY-OprM systems. Despite extensive research, the structure and mechanism of multidrug resistance is unclear (1-9). For example, (i) how do MexA, MexB and OprM proteins assemble to extrude antibiotics? (ii) What is the antibiotic susceptibility of MexA, MexB, and OprM proteins? (iii) How do substrates cross the outer membrane of P. aeruginosa? (iv) Where are antibiotics accumulated inside the cell? This thesis …