Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Microbiology

The Regulation Of Plasmodium Falciparum Metabolism By Haloacid Dehalogenase Proteins, Philip Frasse Aug 2021

The Regulation Of Plasmodium Falciparum Metabolism By Haloacid Dehalogenase Proteins, Philip Frasse

Arts & Sciences Electronic Theses and Dissertations

Malaria is an enormous financial and public health burden for much of the world, infecting over 200 million and killing over 400,000 people every year. While much progress has been made combating malaria in the past few decades, those advances have slowed in recent years, partially due to the emergence of resistance to all known antimalarials used to date. To achieve the goal of eliminating malaria as a major global health problem, new therapeutics need to be developed, targeting novel categories of parasite biology. One poorly understood area of parasite biology is the regulation of various metabolic pathways. We have …


Chloroquine Susceptibility And Reversibility In A Plasmodium Falciparum Genetic Cross, Jigar J. Patel, Drew Thacker, John C. Tan, Perri Pleeter, Lisa Checkley, Joseph M. Gonzales, Bingbing Deng, Paul D. Roepe, Roland A. Cooper, Michael T. Ferdig Jan 2010

Chloroquine Susceptibility And Reversibility In A Plasmodium Falciparum Genetic Cross, Jigar J. Patel, Drew Thacker, John C. Tan, Perri Pleeter, Lisa Checkley, Joseph M. Gonzales, Bingbing Deng, Paul D. Roepe, Roland A. Cooper, Michael T. Ferdig

Biological Sciences Faculty Publications

Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) are major determinants of verapamil (VP)-reversible CQ resistance (CQR). In the presence of mutant PfCRT, additional genes contribute to the wide range of CQ susceptibilities observed. It is not known if these genes influence mechanisms of chemosensitization by CQR reversal agents. Using quantitative trait locus (QTL) mapping of progeny clones from the HB3 x Dd2 cross, we show that the P. falciparum multidrug resistance gene 1 (pfmdr1) interacts with the South-East Asia-derived mutant pfcrt haplotype to modulate CQR levels. A novel chromosome 7 locus is predicted to contribute …


Inhibition Of Yeast Hexokinase By The Antimalarial Drug Artemisinin: Probing Mechanism Of Action With A Model Enzyme, Jennifer S. Spence Jul 2009

Inhibition Of Yeast Hexokinase By The Antimalarial Drug Artemisinin: Probing Mechanism Of Action With A Model Enzyme, Jennifer S. Spence

Biological Sciences Theses & Dissertations

A leading infectious cause of death, malaria threatens approximately half of the world's population, and drug-resistant strains of Plasmodium falciparum have created immense difficulty in chemotherapy of the disease. The artemisinin (ART) class of antimalarials may represent a powerful solution. In addition to their safety, effectiveness, and moderate cost, they are the only drugs in use for which there has been no widespread evidence of clinical resistance. The exact parasiticidal mechanism of ART is highly contested, but evidence suggests that protein alkylation may play a role in cytotoxicity. in vitro essays were performed using yeast hexokinase (HK) to demonstrate a …


Mutations In Transmembrane Domains 1, 4 And 9 Of The Plasmodium Falciparum Chloroquine Resistance Transporter Alter Susceptibility To Chloroquine, Quinine And Quinidine, Roland A. Cooper, Kristan D. Lane, Bingbing Deng, Jianbing Mu, Jigar J. Patel, Thomas E. Wellems, Xinzhuan Su, Michael T. Ferdig Jan 2007

Mutations In Transmembrane Domains 1, 4 And 9 Of The Plasmodium Falciparum Chloroquine Resistance Transporter Alter Susceptibility To Chloroquine, Quinine And Quinidine, Roland A. Cooper, Kristan D. Lane, Bingbing Deng, Jianbing Mu, Jigar J. Patel, Thomas E. Wellems, Xinzhuan Su, Michael T. Ferdig

Biological Sciences Faculty Publications

Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) can result in verapamil-reversible CQ resistance and altered susceptibility to other antimalarials. PfCRT contains 10 membrane-spanning domains and is found in the digestive vacuole (DV) membrane of intraerythrocytic parasites. The mechanism by which PfCRT mediates CQ resistance is unclear although it is associated with decreased accumulation of drug within the DV. On the permissive background of the P. falciparum 106/1(K76) parasite line, we used single-step drug selection to generate isogenic clones containing unique pfcrt point mutations that resulted in amino acid changes in PfCRT transmembrane domains 1 (C72R, K76N, K76I …


Dissecting The Loci Of Low-Level Quinine Resistance In Malaria Parasites, Michael T. Ferdig, Roland A. Cooper, Jianbing Mu, Bingbing Deng, Deirdre A. Joy, Xin-Zhuan Su, Thomas E. Wellems Jan 2004

Dissecting The Loci Of Low-Level Quinine Resistance In Malaria Parasites, Michael T. Ferdig, Roland A. Cooper, Jianbing Mu, Bingbing Deng, Deirdre A. Joy, Xin-Zhuan Su, Thomas E. Wellems

Biological Sciences Faculty Publications

Quinine (QN) remains effective against Plasmodium falciparum, but its decreasing efficacy is documented from different continents. Multiple genes are likely to contribute to the evolution of QN resistance. To locate genes contributing to QN response variation, we have searched a P. falciparum genetic cross for quantitative trait loci (QTL). Results identify additive QTL in segments of chromosomes (Chrs) 13, 7 and 5, and pairwise effects from two additional loci of Chrs 9 and 6 that interact, respectively, with the QTL of Chrs 13 and 7. The mapped segments of Chrs 7 and 5 contain pfcrt, the determinant of …


Multiple Transporters Associated With Malaria Parasite Responses To Chloroquine And Quinine, Jianbing Mu, Michael T. Ferdig, Xiaorong Feng, Deirdre A. Joy, Junhui Duan, Tetsuya Furuya, G. Subramanian, L. Aravind, Roland A. Cooper, John C. Wootton, Momia Xiong, Xin-Zhuan Su Jan 2003

Multiple Transporters Associated With Malaria Parasite Responses To Chloroquine And Quinine, Jianbing Mu, Michael T. Ferdig, Xiaorong Feng, Deirdre A. Joy, Junhui Duan, Tetsuya Furuya, G. Subramanian, L. Aravind, Roland A. Cooper, John C. Wootton, Momia Xiong, Xin-Zhuan Su

Biological Sciences Faculty Publications

Mutations and/or overexpression of various transporters are known to confer drug resistance in a variety of organisms. In the malaria parasite Plasmodium falciparum, a homologue of P-glycoprotein, PfMDR1, has been implicated in responses to chloroquine (CO), quinine (ON) and other drugs, and a putative transporter, PfCRT, was recently demonstrated to be the key molecule in CO resistance. However, other unknown molecules are probably involved, as different parasite clones carrying the same pfcrt and pfmdr1 alleles show a wide range of quantitative responses to CO and ON. Such molecules may contribute to increasing incidences of ON treatment failure, the molecular basis …