Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Microbiology

Characterization Of The Clostridioides Difficile Glycosyl Hydrolase Ccsz, Brian Lowrance Jan 2023

Characterization Of The Clostridioides Difficile Glycosyl Hydrolase Ccsz, Brian Lowrance

Theses and Dissertations (Comprehensive)

Bacteria inhabit many of the harshest environments on Earth; persisting and thriving in conditions thought to be unsuitable for life. One common strategy to withstand these environments is the formation of a biofilm. Biofilm composition varies greatly, depending on the underlying community that produces it. Cellulose, a polymer consistently prevalent in biofilms, has been identified as a virulence factor in many pathogens and is suspected to be involved in pathogenesis by Clostridioides difficile. C. difficile is the #1 cause of hospital acquired diarrhea, which can range from mild to life-threatening infections. Biofilm formation is hypothesized to be involved in …


Biodegradation Of Rubber Particles In Soil: Using Acclimated Bacteria Isolated From Kansas Soil To Degrade Cryogrinds In Slurry, Shane Graham Jan 2022

Biodegradation Of Rubber Particles In Soil: Using Acclimated Bacteria Isolated From Kansas Soil To Degrade Cryogrinds In Slurry, Shane Graham

Williams Honors College, Honors Research Projects

This study investigated the viability of bioremediating rubber cryogrind using enriched indigenous bacteria. To begin the experiment, soils from three highway roadside locations in Kansas, KS 96 and West, KS 400 and 143rd, and 199th, were collected and transported to the lab to be studied. An initial soil characterization was run on the soil samples using distilled (DI) water mixture and 0.01 M CaCl2 to assess conductivity. The soils were tested to gather a baseline of the relationship between pH and conductivity and the impact of its distance from the roadside. Bacteria were isolated from …


Functional Similarity Of Prd-Containing Virulence Regulators In Bacillus Anthracis, Malik Raynor May 2018

Functional Similarity Of Prd-Containing Virulence Regulators In Bacillus Anthracis, Malik Raynor

Dissertations & Theses (Open Access)

Bacillus anthracis produces three regulators, AtxA, AcpA, and AcpB, that control virulence gene expression and are members of an emerging class of regulators termed “PCVRs” (Phosphoenolpyruvate-dependent phosphotransferase regulation Domain-Containing Virulence Regulators). AtxA controls expression of the toxin genes; lef, cya, and pag, and is the master virulence regulator and archetype PCVR. AcpA and AcpB are less well studied. AcpA and AcpB independently positively control transcription of the capsule biosynthetic operon capBCADE, and culture conditions that enhance AtxA activity result in capBCADE transcription in strains lacking acpA and acpB. RNA-Seq was used to assess the regulons of the …


Assay Of The Reverse Osmosis Purified Water In The Life Science Building At Bowling Green State University, Ohio, Nicholas Mendenhall, Scott O. Rogers, Neocles B. Leontis Apr 2018

Assay Of The Reverse Osmosis Purified Water In The Life Science Building At Bowling Green State University, Ohio, Nicholas Mendenhall, Scott O. Rogers, Neocles B. Leontis

Honors Projects

Contaminated water sources can cause problems for scientific research and result in costly delays and failures of experiments. At Bowling Green State University, the reverse osmosis supply circulating in the Life Sciences Building has been measurably contaminated for nearly three years, corresponding to a change in servicing of the system. While servicing has been accelerated, the contamination in the system remains. The focus of this research was to identify the species of bacteria and fungi growing inside of the water system so that it might alert those servicing the system, and to begin to eliminate the contamination. Reverse osmosis water …


Defining Electron Bifurcation In The Electron-Transferring Flavoprotein Family, Amaya M. Garcia Costas, Saroj Poudel, Anne-Frances Miller, Gerrit J. Schut, Rhesa N. Ledbetter, Kathryn R. Fixen, Lance C. Seefeldt, Michael W. W. Adams, Caroline S. Harwood, Eric S. Boyd, John W. Peters Nov 2017

Defining Electron Bifurcation In The Electron-Transferring Flavoprotein Family, Amaya M. Garcia Costas, Saroj Poudel, Anne-Frances Miller, Gerrit J. Schut, Rhesa N. Ledbetter, Kathryn R. Fixen, Lance C. Seefeldt, Michael W. W. Adams, Caroline S. Harwood, Eric S. Boyd, John W. Peters

Chemistry Faculty Publications

Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the …


Mutagenic And Spectroscopic Investigation Of Ph Dependent Cooa Dna Binding, Brian R. Weaver Apr 2017

Mutagenic And Spectroscopic Investigation Of Ph Dependent Cooa Dna Binding, Brian R. Weaver

Chemistry Honors Papers

The carbon monoxide (CO) sensing heme protein, CooA, is a transcription factor which exists in several bacteria that utilize CO as an energy source. CooA positively regulates the expression of coo genes in the presence of CO such that the corresponding proteins may metabolize CO. The present studies have yielded the unexpected result that Fe(III) CooA binds DNA tightly at pH < 7, deviating from all previously reported work which indicate that CooA DNA binding is initiated only when the exogenous CO effector reacts with the Fe(II) CooA heme. This observation suggests that the disruption of one or more salt bridges upon effector binding may be a critical feature of the normal CooA activation mechanism. To test this possibility, several protein variants that eliminated a selected salt bridge for the CooA homolog from Rhodospirillum rubrum were prepared via site-directed mutagenesis. Samples of these variant proteins, which were overexpressed in Escherichia coli, were then characterized by spectroscopic methods and functional assays to investigate the impact these mutations had on CooA heme coordination …


Novel Approaches To Mitigating Bacterial Biofilm Formation And Intercellular Communication, Stephen Kasper Jan 2017

Novel Approaches To Mitigating Bacterial Biofilm Formation And Intercellular Communication, Stephen Kasper

Legacy Theses & Dissertations (2009 - 2024)

Long thought of as solitary single-cell organisms, it is now widely accepted that bacteria can act and cooperate as social organisms. Phenomena such as biofilm formation and quorum sensing (QS) are two intimately intertwined cooperative behaviors that significantly contribute to the pathogenesis of many bacteria. Biofilms are surface associated communities of bacteria encased in a secreted extracellular matrix, which provides several advantages over an individualized lifestyle, such as increased protection from antimicrobial agents as well as enhanced opportunity for the exchange of genetic material. Bacterial QS is a system of population-based communication through the production, sensing, and response to chemical …


Purification And Characterization Of Bcsc; An Integral Component Of Bacterial Cellulose Export, Emily D. Wilson Ms Jan 2015

Purification And Characterization Of Bcsc; An Integral Component Of Bacterial Cellulose Export, Emily D. Wilson Ms

Theses and Dissertations (Comprehensive)

Biofilms are a growing concern in the medical field due to their increased resistance to antibiotics. When found in a biofilm, bacteria can have antibiotic resistance 10-1000 times that of their planktonic counterparts. Therefore, it is important to study the formation of biofilms. Cellulose biofilms are formed by Enterobacteriaceae, such as many Escherichia coli and Salmonella spp. strains. Biofilms provide these species with benefits including antimicrobial protection, development of bacterial communities, promotion of DNA exchange, uptake of nutrients, and, in the case of cellulose biofilms, immune system evasion. Cellulose biofilms are controlled by the Bacterial cellulose synthesis (Bcs) complex located …


Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser May 2012

Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser

Lawrence University Honors Projects

Plants contain innate immune systems that deter pathogen infection. Pattern recognition receptors bind microbe-associated molecular patterns (MAMPs), triggering immunity. MAMPs are proteins exclusive to pathogens that are typically indispensable for their survival. For this reason, MAMPs cannot be mutated or removed without causing pathogen death. However, this does not necessitate constitutive expression of MAMPs. In this study, the MAMP response of Arabidopsis thaliana was utilized to determine differential detection of MAMPs expressed by Pseudomonas syringe pv. tomato DC3000 when pretreated with A. thaliana. Results demonstrated that more MAMPs are detected when P. syringae had previously encountered A. thaliana, …


Microbial Nad Metabolism: Lessons From Comparative Genomics, Francesca Gazzaniga, Rebecca Stebbins, Sheila Z. Chang, Mark A. Mcpeek, Charles Brenner Sep 2009

Microbial Nad Metabolism: Lessons From Comparative Genomics, Francesca Gazzaniga, Rebecca Stebbins, Sheila Z. Chang, Mark A. Mcpeek, Charles Brenner

Dartmouth Scholarship

NAD is a coenzyme for redox reactions and a substrate of NAD-consuming enzymes, including ADP-ribose transferases, Sir2-related protein lysine deacetylases, and bacterial DNA ligases. Microorganisms that synthesize NAD from as few as one to as many as five of the six identified biosynthetic precursors have been identified. De novo NAD synthesis from aspartate or tryptophan is neither universal nor strictly aerobic. Salvage NAD synthesis from nicotinamide, nicotinic acid, nicotinamide riboside, and nicotinic acid riboside occurs via modules of different genes. Nicotinamide salvage genes nadV and pncA, found in distinct bacteria, appear to have spread throughout the tree of life …


Aerobic Biodegradation Of Methyl Tert-Butyl Ether By Aquifer Bacteria From Leaking Underground Storage Tank Sites, S. R. Kane, H. R. Beller, T. C. Legler, C. J. Koester, Holly C. Pinkart, R. U. Halden, A. M. Happel Dec 2001

Aerobic Biodegradation Of Methyl Tert-Butyl Ether By Aquifer Bacteria From Leaking Underground Storage Tank Sites, S. R. Kane, H. R. Beller, T. C. Legler, C. J. Koester, Holly C. Pinkart, R. U. Halden, A. M. Happel

All Faculty Scholarship for the College of the Sciences

The potential for aerobic methyl tert-butyl ether (MTBE) degradation was investigated with microcosms containing aquifer sediment and groundwater from four MTBE-contaminated sites characterized by oxygen-limited in situ conditions. MTBE depletion was observed for sediments from two sites (e.g., 4.5 mg/liter degraded in 15 days after a 4-day lag period), whereas no consumption of MTBE was observed for sediments from the other sites after 75 days. For sediments in which MTBE was consumed, 43 to 54% of added [U-14C]MTBE was mineralized to14CO2. Molecular phylogenetic analyses of these sediments indicated the enrichment of species closely …


An Electrochemical Method Of Measuring The Oxidation Rate Of Ferrous To Ferric Iron With Oxygen In The Presence Of Thiobacillus Ferrooxidans, David J. Oliver, B. Pesic, P. Wichlacz Jan 1989

An Electrochemical Method Of Measuring The Oxidation Rate Of Ferrous To Ferric Iron With Oxygen In The Presence Of Thiobacillus Ferrooxidans, David J. Oliver, B. Pesic, P. Wichlacz

David J. Oliver

The oxidation of Fe2+ with oxygen in sulfate solutions was studied in the presence of T. ferrooxidans. To measure the chemical activity of bacteria, and the oxidation rate of iron, the redox potentials of solutions were continuously monitored during the experiments. The redox potentials were simultaneously monitored on the platinum and pyrite indicator electrodes. The redox potential versus time curves were further used to calculate the basic kinetic parameters, such as the reaction orders, the activation energy, and the frequency factor. It was found that under atmospheric conditions, and at Fe2+ < 0.001M, T < 25°C, and at pH above 2.2, the oxidation of iron is governed by the following rate expression: [equation image] Below pH = 2.2, the oxidation rate is independent of H+ Concentration.