Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Microbiology

Oxydifficidin-Producing Bacillus Presents Novel Antimicrobial Activity Against Neisseria Gonorrhoeae Involving The Deda Protein, Jingbo Kan Sep 2021

Oxydifficidin-Producing Bacillus Presents Novel Antimicrobial Activity Against Neisseria Gonorrhoeae Involving The Deda Protein, Jingbo Kan

Dissertations, Theses, and Capstone Projects

Bacterial human pathogens cause severe infectious diseases which are the second most common cause of death next to cancer and cardiovascular diseases in the world, especially in developing countries. Gonorrhea particularly, is the second most common sexually transmitted infection (STI) which is caused by the microorganism Neisseria gonorrhoeae (GC). Centers for Disease Control and Prevention (CDC) estimates that more than 1.6 million new gonorrhea cases emerged in USA in 2018 (“Detailed STD Facts - Gonorrhea” n.d.). Also, the WHO (World Health Organization) shows that gonorrhea is the most antibiotic resistant STI (“PAHO/WHO | Gonorrhea” n.d.), highlighting the shortage of efficient …


Development Of Small Molecule Antibiotics Against A Conserved Rna Gene Regulatory Element In Gram-Positive Bacteria, Ville Yrjö Petteri Väre Jan 2020

Development Of Small Molecule Antibiotics Against A Conserved Rna Gene Regulatory Element In Gram-Positive Bacteria, Ville Yrjö Petteri Väre

Legacy Theses & Dissertations (2009 - 2024)

Bacterial infections and the rise of antibiotic resistance, especially multidrug resistant strains, have generated a clear need for discovery of novel therapeutics. Most antibiotics in use today are derivatives of previous antibiotics to which resistance mechanisms already exist, and traditionally they have a single target: either a protein or rRNA. Gram-positive bacteria regulate the expression of several essential genes or operons using a mechanism called the T-box. The T-box is a structurally conserved riboswitch-like gene regulator in the 5’-untranslated region (UTR) of numerous essential genes of Gram-positive bacteria. T-boxes are stabilized by cognate, unacylated tRNA ligands, allowing the formation of …


Lysine Biosynthesis In Bacteria: A Metallodesuccinylase As A Potential Antimicrobial Target, Danuta M. Gillner, Daniel P. Becker Ph.D., Richard C. Holz Feb 2018

Lysine Biosynthesis In Bacteria: A Metallodesuccinylase As A Potential Antimicrobial Target, Danuta M. Gillner, Daniel P. Becker Ph.D., Richard C. Holz

Richard C. Holz

In this review, we summarize the recent literature on dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) enzymes, with an emphasis on structure–function studies that provide insight into the catalytic mechanism. Crystallographic data have also provided insight into residues that might be involved in substrate and hence inhibitor recognition and binding. These data have led to the design and synthesis of several new DapE inhibitors, which are described along with what is known about how inhibitors interact with the active site of DapE enzymes, including the efficacy of a moderately strong DapE inhibitor.


Testing Bacterial Antibiotic Production Under Carbohydrate And Protein Starvation, Briley Baird Jan 2018

Testing Bacterial Antibiotic Production Under Carbohydrate And Protein Starvation, Briley Baird

Honors Theses

Bacteria produce antibiotics when they are under stress, including starvation stress. Bacteria were tested under carbohydrate and protein starvation against Bacillus subtilis and Escherichia coli (due to the respective Gram positivity and negativity), in order to check for antibiotic production. The bacteria being tested were isolated by past Microbiology classes and stored in a -80°C freezer in the basement of Jones Science Center at Ouachita Baptist University. These test bacteria were grown on tryptic soy agar (TSA) to produce isolated bacterial colonies. Samples of isolated test colonies were then grown under conditions of carbohydrate starvation (M9 salts agar with 0.1 …


Lysine Biosynthesis In Bacteria: A Metallodesuccinylase As A Potential Antimicrobial Target, Danuta M. Gillner, Daniel P. Becker Ph.D., Richard C. Holz Feb 2013

Lysine Biosynthesis In Bacteria: A Metallodesuccinylase As A Potential Antimicrobial Target, Danuta M. Gillner, Daniel P. Becker Ph.D., Richard C. Holz

Chemistry: Faculty Publications and Other Works

In this review, we summarize the recent literature on dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) enzymes, with an emphasis on structure–function studies that provide insight into the catalytic mechanism. Crystallographic data have also provided insight into residues that might be involved in substrate and hence inhibitor recognition and binding. These data have led to the design and synthesis of several new DapE inhibitors, which are described along with what is known about how inhibitors interact with the active site of DapE enzymes, including the efficacy of a moderately strong DapE inhibitor.


Anti-Germinants As A New Strategy To Prevent Clostridium Difficile Infections, Amber Janece Howerton Dec 2012

Anti-Germinants As A New Strategy To Prevent Clostridium Difficile Infections, Amber Janece Howerton

UNLV Theses, Dissertations, Professional Papers, and Capstones

Clostridium difficileinfections (CDI) have emerged as a leading cause of hospital-associated complications. CDI is the major cause of antibiotic-related cases of diarrhea and nearly all cases of pseudomembranous colitis. The infective form of C. difficileis the spore, a dormant and hardy structure that forms under stress. Germination of C. difficile spores into toxin producing bacteria in the GI tract of susceptible patients is the first step in CDI establishment. Patient susceptibility occurs with a disruption of the natural gut microbiota by broad-spectrum antibiotics. Antibiotic treatments usually resolve CDI but refractory cases are on the rise. Of great concern is the …