Open Access. Powered by Scholars. Published by Universities.®

Laboratory and Basic Science Research Commons

Open Access. Powered by Scholars. Published by Universities.®

Rowan University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 80

Full-Text Articles in Laboratory and Basic Science Research

Ksp1 Is An Autophagic Receptor Protein For The Snx4-Assisted Autophagy Of Ssn2/Med13, Sara E Hanley, Stephen D Willis, Steven J Doyle, Randy Strich, Katrina F Cooper Feb 2024

Ksp1 Is An Autophagic Receptor Protein For The Snx4-Assisted Autophagy Of Ssn2/Med13, Sara E Hanley, Stephen D Willis, Steven J Doyle, Randy Strich, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Ksp1 is a casein II-like kinase whose activity prevents aberrant macroautophagy/autophagy induction in nutrient-rich conditions in yeast. Here, we describe a kinase-independent role of Ksp1 as a novel autophagic receptor protein for Ssn2/Med13, a known cargo of Snx4-assisted autophagy of transcription factors. In this pathway, a subset of conserved transcriptional regulators, Ssn2/Med13, Rim15, and Msn2, are selectively targeted for vacuolar proteolysis following nitrogen starvation, assisted by the sorting nexin heterodimer Snx4-Atg20. Here we show that phagophores also engulf Ksp1 alongside its cargo for vacuolar proteolysis. Ksp1 directly associates with Atg8 following nitrogen starvation at the interface of an Atg8-family interacting …


Profiling And Verifying The Substrates Of E3 Ubiquitin Ligase Rsp5 In Yeast Cells, Shuai Fang, Geng Chen, Yiyang Wang, Rakhee Ganti, Tatiana A Chernova, Li Zhou, Savannah E Jacobs, Duc Duong, Hiroaki Kiyokawa, Yury O Chernoff, Ming Li, Natalia Shcherbik, Bo Zhao, Jun Yin Aug 2023

Profiling And Verifying The Substrates Of E3 Ubiquitin Ligase Rsp5 In Yeast Cells, Shuai Fang, Geng Chen, Yiyang Wang, Rakhee Ganti, Tatiana A Chernova, Li Zhou, Savannah E Jacobs, Duc Duong, Hiroaki Kiyokawa, Yury O Chernoff, Ming Li, Natalia Shcherbik, Bo Zhao, Jun Yin

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Yeast is an essential model organism for studying protein ubiquitination pathways; however, identifying the direct substrates of E3 in the cell presents a challenge. Here, we present a protocol for using the orthogonal ubiquitin transfer (OUT) cascade to profile the substrate specificity of yeast E3 Rsp5. We describe steps for OUT profiling, proteomics analysis, in vitro and in cell ubiquitination, and stability assay. The protocol can be adapted for identifying and verifying the ubiquitination targets of other E3s in yeast. For complete details on the use and execution of this protocol, please refer to Wang et al.


Modeling Biphasic, Non-Sigmoidal Dose-Response Relationships: Comparison Of Brain- Cousens And Cedergreen Models For A Biochemical Dataset, Venkat D. Abbaraju, Tamaraty L. Robinson, Brian P. Weiser Aug 2023

Modeling Biphasic, Non-Sigmoidal Dose-Response Relationships: Comparison Of Brain- Cousens And Cedergreen Models For A Biochemical Dataset, Venkat D. Abbaraju, Tamaraty L. Robinson, Brian P. Weiser

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Biphasic, non-sigmoidal dose-response relationships are frequently observed in biochemistry and pharmacology, but they are not always analyzed with appropriate statistical methods. Here, we examine curve fitting methods for “hormetic” dose-response relationships where low and high doses of an effector produce opposite responses. We provide the full dataset used for modeling, and we provide the code for analyzing the dataset in SAS using two established mathematical models of hormesis, the Brain-Cousens model and the Cedergreen model. We show how to obtain and interpret curve parameters such as the ED50 that arise from modeling, and we discuss how curve parameters might change …


Effects Of Sex And Estrous Cycle On Intravenous Oxycodone Self-Administration And The Reinstatement Of Oxycodone-Seeking Behavior In Rats, Nicole M. Hinds, Ireneusz D. Wojtas, Corinne A. Gallagher, Claire M. Corbett, Daniel F. Manvich Jul 2023

Effects Of Sex And Estrous Cycle On Intravenous Oxycodone Self-Administration And The Reinstatement Of Oxycodone-Seeking Behavior In Rats, Nicole M. Hinds, Ireneusz D. Wojtas, Corinne A. Gallagher, Claire M. Corbett, Daniel F. Manvich

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The increasing misuse of both prescription and illicit opioids has culminated in a national healthcare crisis in the United States. Oxycodone is among the most widely prescribed and misused opioid pain relievers and has been associated with a high risk for transition to compulsive opioid use. Here, we sought to examine potential sex differences and estrous cycle-dependent effects on the reinforcing efficacy of oxycodone, as well as on stress-induced or cue-induced oxycodone-seeking behavior, using intravenous (IV) oxycodone self-administration and reinstatement procedures. In experiment 1, adult male and female Long-Evans rats were trained to self-administer 0.03 mg/kg/inf oxycodone according to a …


Invited Review: Adrenocortical Function In Avian And Non-Avian Reptiles: Insights From Dispersed Adrenocortical Cells., Rocco V. Carsia, Patrick J. Mcilroy, Henry B John-Alder Jul 2023

Invited Review: Adrenocortical Function In Avian And Non-Avian Reptiles: Insights From Dispersed Adrenocortical Cells., Rocco V. Carsia, Patrick J. Mcilroy, Henry B John-Alder

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Herein we review our work involving dispersed adrenocortical cells from several lizard species: the Eastern Fence Lizard (Sceloporus undulatus), Yarrow's Spiny Lizard (Sceloporus jarrovii), Striped Plateau Lizard (Sceloporus virgatus) and the Yucatán Banded Gecko (Coleonyx elegans). Early work demonstrated changes in steroidogenic function of adrenocortical cells derived from adult S. undulatus associated with seasonal interactions with sex. However, new information suggests that both sexes operate within the same steroidogenic budget over season. The observed sex effect was further explored in orchiectomized and ovariectomized lizards, some supported with exogenous testosterone. Overall, a suppressive effect of testosterone was evident, especially in cells …


Role Of Chronic Stress-Induced Neuroinflammation In Rodent Locus Coeruleus Physiology And Anxiety-Like Behaviors, Arthur Anthony Alfonso Reyes Jun 2023

Role Of Chronic Stress-Induced Neuroinflammation In Rodent Locus Coeruleus Physiology And Anxiety-Like Behaviors, Arthur Anthony Alfonso Reyes

Graduate School of Biomedical Sciences Theses and Dissertations

The locus coeruleus (LC), the primary site of brain norepinephrine (NE), is a key anatomical brain region implicated in the stress response. Stress is a neuroendocrine physiologic response to a stressor that promotes organism survival through adaptive change and restoration of homeostasis. The central stress response, which drives behavioral and physiological change, is primarily mediated by activating the hypothalamic-pituitary-adrenal (HPA) axis. While advantageous in the short term, chronic stress exposure can lead to HPA axis and LC dysregulation, which are thought to contribute to the etiology of anxiety disorders. Previous studies demonstrate the effects of acute stress in increasing LC …


The Involvement Of Ubiquitin In Med13 Cyclin C Degradation Following Cellular Stress, Ayesha Gurnani, Brittany Friedson, Katrina Cooper May 2023

The Involvement Of Ubiquitin In Med13 Cyclin C Degradation Following Cellular Stress, Ayesha Gurnani, Brittany Friedson, Katrina Cooper

Rowan-Virtua Research Day

The Cdk8 Kinase Module is a dissociable regulator of cellular stress response genes, with degradation of its components Med13 and cyclin C eventually determining cell fate decisions such as engaging cell survival or cell death mechanisms. We aimed to explore the roles of ubiquitin in degradation of the Cdk8 Kinase Module following nitrogen starvation, with respect to the potential involvement of deubiquitinating enzyme Doa4, lysine linkage at position K63, and E2 ubiquitin conjugating enzymes Ubc4 and Ubc5. We utilized Western blot analysis to observe nitrogen starvation-induced degradation of Med13-HA in wild-type, doa4 mutant, and K63R yeast strains; degradation of cyclin …


Swallowing Disrupts Tongue-Jaw Coordination During Chewing In A Rat Model Of Parkinson's Disease, Meejan Palhang, N. Charles, Francois Gould May 2023

Swallowing Disrupts Tongue-Jaw Coordination During Chewing In A Rat Model Of Parkinson's Disease, Meejan Palhang, N. Charles, Francois Gould

Rowan-Virtua Research Day

The primary motor symptoms of Parkinson’s disease, including bradykinesia, rigidity, and tremor, are associated with difficulties regulating transitions between motor behaviors due to basal ganglia dysfunction. Chewing and swallowing, which are disordered in most patients with Parkinson’s disease, are two complex motor behaviors which overlap in time and share some neuromuscular components. The objective of this study is to identify how Parkinson’s disease affects the coordination of chewing and swallowing. We hypothesize that as a result of impaired regulation of shift between motor patterns, chewing cycles that occur with a swallow will be more affected that chewing cycles occurring in …


Differential Degeneration Of Neurons In A Mouse Model Of Canavan Disease, Vibha Chauhan, Quy Nguyen, Jeremy Francis, Paola Leone May 2023

Differential Degeneration Of Neurons In A Mouse Model Of Canavan Disease, Vibha Chauhan, Quy Nguyen, Jeremy Francis, Paola Leone

Rowan-Virtua Research Day

Canavan disease (CD) is an inherited leukodystrophy caused by inactivating mutations to the glial enzyme aspartoacylase (ASPA). ASPA catabolizes neuronal N-acetylaspartate (NAA) into free acetate and aspartate and loss of this function results in the chronic elevation of non-catabolized NAA and the failure of developmental myelination. Elevated NAA is thought to cause damage to myelin and myelin-producing cells (oligodendrocytes, but the viability of neurons in CD is relatively unexplored. We compare here the progressive degeneration of neurons in two regions of the CD mouse brain, the thalamus and the cortex, distinguished by differing degrees of vacuolation, and show that the …


Extravasated Brain-Reactive Autoantibodies Perturb Neuronal Surface Protein Expression In Alzheimer's Pathology, Wardah Bajwa, Mary Kosciuk, Randel L. Swanson, Anuradha Krishnan, Venkat Venkataraman, Robert Nagele, Nimish Acharya May 2023

Extravasated Brain-Reactive Autoantibodies Perturb Neuronal Surface Protein Expression In Alzheimer's Pathology, Wardah Bajwa, Mary Kosciuk, Randel L. Swanson, Anuradha Krishnan, Venkat Venkataraman, Robert Nagele, Nimish Acharya

Rowan-Virtua Research Day

Background: Increased blood-brain barrier (BBB) permeability is reported in both the neuropathological and in vivo studies in both Alzheimer’s Disease (AD) and age matched cognitively normal, no cognitive impairment (NCI), subjects. Impaired BBB allows various vascular components such as immunoglobulin G (IgG) to extravasate into the brain and specifically bind to various neuronal surface proteins (NSP), also known as brain reactive autoantibodies (BrABs). This interaction is predicted to further enhance deposition of amyloid plaques.

Hypothesis: Interaction between extravasated BrABs and its cognate NSPs lower the expression of that NSPs in AD patients.

Methods: We selected Western blotting technique to study …


Comparative Analysis Of The Effects Of Actual Versus Assumed Opioid Experience On The Regulation Of Ventral Striatal Opioid Receptor Gene Expression, Indu Mithra Madhuranthakam, Martin Job May 2023

Comparative Analysis Of The Effects Of Actual Versus Assumed Opioid Experience On The Regulation Of Ventral Striatal Opioid Receptor Gene Expression, Indu Mithra Madhuranthakam, Martin Job

Rowan-Virtua Research Day

Rationale: We conducted experiments to assess the effect of prior opioid experience on gene expression changes. We compared the current experimenter-imposed short versus extended-access conditions of opioid self-administration and developed a new quantitative method to determine their effectiveness in identifying the role of opioid experience in regulating opioid receptor expression levels in the ventral striatum (VS) using an oxycodone self-administration/abstinence model.

Methods: In this study, male Sprague-Dawley rats (n=36) were trained for 20 days to self-administer oxycodone at 0.1 mg/kg/infusion under short access (n=15, or saline as controls n=3, for 3h/day) or extended access (n=15, or saline as controls n=3, …


Identifying Co-Factors That Drive Tra-1 Activator Function, Jibran Imtiaz, Youngquan Shen, Ronald Ellis May 2023

Identifying Co-Factors That Drive Tra-1 Activator Function, Jibran Imtiaz, Youngquan Shen, Ronald Ellis

Rowan-Virtua Research Day

Gli proteins are involved in cell fate determination, proliferation, and patterning in many species and are major effectors of Hedgehog (Hh) signaling. There are three Gli proteins in humans, and mutations or errors in their regulation lead to a variety of developmental disorders or cancer. However, the mechanisms by which they interact with co-factors are poorly understood. We are analyzing co-factors of Gli proteins using TRA-1 in Caenorhabditis nematodes. The TRA-1 zinc fingers are structurally like those of other Gli proteins, and TRA-1 can be cleaved like other Gli proteins to form a repressor. However, its function has changed during …


Immunomodulatory Effects Of Resolvin D2 In A Model Of Infection, Prem Yugandhar Kadiyam Sundarasivarao May 2023

Immunomodulatory Effects Of Resolvin D2 In A Model Of Infection, Prem Yugandhar Kadiyam Sundarasivarao

Graduate School of Biomedical Sciences Theses and Dissertations

Dysregulated hyperinflammatory host immune response to underlying bacterial infections is a characteristic of sepsis. In sepsis, bacteria often trigger abnormal hyperinflammatory responses which can cause multiple organ failure and if sustained can lead to an immunosuppressive phase where the host is susceptible to secondary infections caused by opportunistic bacteria like Pseudomonas aeruginosa (P. aeruginosa). In our studies, we used a 2-hit model of cecal ligation and puncture (CLP) followed by P. aeruginosa secondary lung infection to investigate cellular and molecular mechanisms in the beneficial action of resolvin D2 (RvD2). Resolvins of the D-series are a group of fatty acids known …


Med13 Degradation Defines A New Receptor-Mediated Autophagy Pathway Activated By Nutrient Deprivation, Sara E. Hanley Apr 2023

Med13 Degradation Defines A New Receptor-Mediated Autophagy Pathway Activated By Nutrient Deprivation, Sara E. Hanley

Graduate School of Biomedical Sciences Theses and Dissertations

Cells are exposed to an enormous amount of diverse extracellular cues but have a limited arsenal of weapons for protecting and maintaining homeostasis. To overcome these restrictions, nature has engineered proteins that have multiple functions. The pleiotropy of using one protein to carry out a variety of functions allows cells to rapidly execute tailored responses to a diverse set of signals. The Cdk8 kinase module (CKM) is a conserved detachable unit of the Mediator complex predominantly known for its role in transcriptional regulation. The CKM is composed of four proteins, the scaffolding proteins Med13 and Med12, as well as the …


The Effects Of Specialized Pro-Resolving Mediator Lipoxin A4 On Pseudomonas Aeruginosa Biofilms And Interactions With Monocytes, Julianne M. Thornton Apr 2023

The Effects Of Specialized Pro-Resolving Mediator Lipoxin A4 On Pseudomonas Aeruginosa Biofilms And Interactions With Monocytes, Julianne M. Thornton

Graduate School of Biomedical Sciences Theses and Dissertations

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen known as a major cause of hospital-acquired secondary infections, commonly causing chronic respiratory infections in immunocompromised individuals, especially those with cystic fibrosis, and often found in wound infections. P. aeruginosa uses the quorum sensing pathway to readily form protective biofilms, which reduce the efficacy of antibiotics and access by host immune cells to eradicate the pathogen. Specialized pro-resolving mediators (SPMs) are lipids endogenously produced by the host immune response to infection to aid in infection resolution. One SPM, Lipoxin A4 (LxA4), has been shown to be a robust quorum sensing inhibitor.

The …


Investigating The Antibacterial And Immunomodulatory Properties Of Lactobacillus Acidophilus Postbiotics, Rachael M. Wilson Apr 2023

Investigating The Antibacterial And Immunomodulatory Properties Of Lactobacillus Acidophilus Postbiotics, Rachael M. Wilson

Graduate School of Biomedical Sciences Theses and Dissertations

Probiotics are nonpathogenic microorganisms that have been extensively studied for their ability to prevent various infectious, gastrointestinal, and autoimmune diseases. The mechanisms underlying these probiotic effects have not been elucidated. However, we and other researchers have evidence suggesting that probiotic bacteria secrete metabolites that are antimicrobial and anti-inflammatory. As such, we developed a methodology to collect the secreted metabolites from a probiotic bacterium, Lactobacillus acidophilus, and tested this cell free filtrate (CFF) both in vitro and in vivo. Using this CFF, we have demonstrated that L. acidophilus secretes a molecule(s) that has specific bactericidal activity against the opportunistic pathogen, Pseudomonas …


Modeling The Tripartite Role Of Cyclin C In Cellular Stress Response Coordination, Steven J. Doyle Apr 2023

Modeling The Tripartite Role Of Cyclin C In Cellular Stress Response Coordination, Steven J. Doyle

Graduate School of Biomedical Sciences Theses and Dissertations

For normal cellular function, exogenous signals must be interpreted and careful coordination must take place to ensure desired fates are achieved. Mitochondria are key regulatory nodes of cellular fate, undergoing fission/fusion cycles depending on the needs of the cell, and help mediate cell death fates. The CKM or Cdk8 kinase module, is composed of cyclin C (CC), Cdk8, Med12/12L, and Med13/13L. The CKM controls RNA polymerase II, acting as a regulator of stress-response and growth-control genes. Following stress, CC translocates to the mitochondria and interacts with both fission and iRCD apoptotic mediators. We hypothesize that CC represents a key mediator, …


Anterior And Posterior Tongue Regions And Taste Papillae: Distinct Roles And Regulatory Mechanisms With An Emphasis On Hedgehog Signaling And Antagonism., Archana Kumari, Charlotte M. Mistretta Mar 2023

Anterior And Posterior Tongue Regions And Taste Papillae: Distinct Roles And Regulatory Mechanisms With An Emphasis On Hedgehog Signaling And Antagonism., Archana Kumari, Charlotte M. Mistretta

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Sensory receptors across the entire tongue are engaged during eating. However, the tongue has distinctive regions with taste (fungiform and circumvallate) and non-taste (filiform) organs that are composed of specialized epithelia, connective tissues, and innervation. The tissue regions and papillae are adapted in form and function for taste and somatosensation associated with eating. It follows that homeostasis and regeneration of distinctive papillae and taste buds with particular functional roles require tailored molecular pathways. Nonetheless, in the chemosensory field, generalizations are often made between mechanisms that regulate anterior tongue fungiform and posterior circumvallate taste papillae, without a clear distinction that highlights …


Mglu5 Inhibition In The Basolateral Amygdala Prevents Estrous Cycle-Dependent Changes In Cue-Induced Cocaine Seeking, Claire M. Corbett, Emily N. D. Miller, Jessica A. Loweth Mar 2023

Mglu5 Inhibition In The Basolateral Amygdala Prevents Estrous Cycle-Dependent Changes In Cue-Induced Cocaine Seeking, Claire M. Corbett, Emily N. D. Miller, Jessica A. Loweth

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Drug associated cues are a common relapse trigger for individuals recovering from cocaine use disorder. Sex and ovarian hormones influence patterns of cocaine use and relapse vulnerability, with studies indicating that females show increased cue-induced craving and relapse vulnerability compared to males. In a rodent model of cocaine craving and relapse vulnerability, cue-induced cocaine seeking behavior following weeks of withdrawal from extended-access cocaine self-administration is higher in females in the estrus stage of the reproductive (estrous) cycle (Estrus Females) compared to both Males and females in all other stages (Non-Estrus Females). However, the neuronal substrates and cellular mechanisms underlying these …


Dpc29 Promotes Post-Initiation Mitochondrial Translation In Saccharomyces Cerevisiae, Kyle A. Hubble, Michael F. Henry Feb 2023

Dpc29 Promotes Post-Initiation Mitochondrial Translation In Saccharomyces Cerevisiae, Kyle A. Hubble, Michael F. Henry

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Mitochondrial ribosomes synthesize essential components of the oxidative phosphorylation (OXPHOS) system in a tightly regulated process. In the yeast Saccharomyces cerevisiae, mitochondrial mRNAs require specific translational activators, which orchestrate protein synthesis by recognition of their target gene's 5'-untranslated region (UTR). Most of these yeast genes lack orthologues in mammals, and only one such gene-specific translational activator has been proposed in humans-TACO1. The mechanism by which TACO1 acts is unclear because mammalian mitochondrial mRNAs do not have significant 5'-UTRs, and therefore must promote translation by alternative mechanisms. In this study, we examined the role of the TACO1 orthologue in yeast. We …


Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble Dec 2022

Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble

Graduate School of Biomedical Sciences Theses and Dissertations

Although the cytosolic and bacterial translation systems are well studied, much less is known about translation in mitochondria. In the yeast Saccharomyces cerevisiae, mitochondrial gene expression is predominately regulated by translational activators. These regulators are thought to promote translation by binding the elongated 5’-UTRs on their target mRNAs. Since mammalian mitochondrial mRNAs generally lack 5’-UTRs, they must regulate translation by other mechanisms. As expected, most yeast translational activators lack orthologues in mammals. Recently, a mitochondrial gene-specific translational activator, TACO1, was reported in mice and humans. To better define its role in mitochondrial translation I examined the yeast TACO1 orthologue, DPC29. …


Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo Aug 2022

Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo

Graduate School of Biomedical Sciences Theses and Dissertations

In Caenorhabditis elegans, the heterochronic pathway is comprised of a hierarchy of genes that control the proper timing of developmental events. hbl-1 (Hunchback Like-1) encodes an Ikaros family zinc-finger transcription factor that promotes the L2 stage cell fate events of the hypodermis. The downregulation ofhbl-1 is a crucial step for the transition from the L2 to the L3 stage. There are two known processes through which negative regulation of hbl-1 occurs: suppression of hbl-1 expression by 3 let-7 miRNAs through the hbl-1 3’UTR and inhibition of HBL-1 activity by LIN-46. The mechanisms by which hbl-1 is positively regulated have not …


Alternate Site Pacing And The Impact On Intracellular Calcium Handling During The Post-Extrasystolic Cardiac Cycle, Kent Ozcan, Lawrence Mulligan May 2022

Alternate Site Pacing And The Impact On Intracellular Calcium Handling During The Post-Extrasystolic Cardiac Cycle, Kent Ozcan, Lawrence Mulligan

Rowan-Virtua Research Day

Objective: Previous work has shown that alternate site (RV apex) results in myocardial dysfunction. With the development of tools to place endocardial pacing leads in locations that create physiological pacing activation, we sought to evaluate how ventricular trans-septal or left ventricular apical placement pacing differs from right atrial pacing. We will evaluate how these chronic pacing modes impact the PR and RF at baseline, 0, and 16 weeks in the canine heart.

Methods: Quantitative analysis will be performed on previously generated data. The data set includes pacing of 15 dogs total (8 with trans-septal leads & 7 with left ventricular …


Effect Of Uracil Dna Glycosylase Activity On The Efficacy Of Thymidylate Synthase Inhibitor/Hdac Inhibitor Combination Therapies In Colon Cancer, Rashmi Kulkarni, Brian P Weiser May 2022

Effect Of Uracil Dna Glycosylase Activity On The Efficacy Of Thymidylate Synthase Inhibitor/Hdac Inhibitor Combination Therapies In Colon Cancer, Rashmi Kulkarni, Brian P Weiser

Rowan-Virtua Research Day

Human uracil DNA glycosylase (UNG2) is responsible for removing uracil bases from DNA and initiates base excision repair pathways. Accumulation of uracil or its fluorinated analogs in DNA is one of the killing mechanisms of thymidylate synthase (TS) inhibitors in cancer cells, and depletion of UNG2 often enhances the toxicity of these anticancer drugs. We tested the effect of UNG2 KO on the efficacy of multiple TS inhibitors (5-fluorouracil, fluorodeoxyuridine, and pemetrexed) and we determined that, except for 5-fluorouracil, all other TS inhibitors were significantly more potent in UNG2 KO cells compared to wild-type HT29 cells. Interestingly, UNG2 protein levels …


Cyclin C Is Sufficient For Myoblast Differentiation-Induced Mitochondrial Fragmentation, Alicia N. Campbell, Randy Strich May 2022

Cyclin C Is Sufficient For Myoblast Differentiation-Induced Mitochondrial Fragmentation, Alicia N. Campbell, Randy Strich

Rowan-Virtua Research Day

One of the largest and most dynamic tissues in the body, skeletal muscle, requires constant regeneration and upkeep. Dysregulation of this regeneration process has been implicated in many neuromuscular diseases and myotonic dystrophies. Regeneration requires the differentiation of myogenic lineages including exiting the cell cycle, gene expression changes, and fusing of myoblasts into multinucleate myotubes. Part of this reconstruction requires the breakdown and repopulation of mitochondrial networks. At the early onset of myoblast differentiation, there is an upregulation of dynamin-related protein, Drp1, and an increase in mitophagy mediated by sequestosome (SQSTM1) removal of mitochondria.

Previously, our lab has shown that …


Examining Levels Of Catecholamine Neurotransmitter Regulatory Proteins Within The Prefrontal Cortex Of Rodents Following Traumatic Brain Injury, Eleni Papadopoulos, Christopher P. Knapp, Claire M. Corbett, Jessica Loweth, Rachel L. Navarra May 2022

Examining Levels Of Catecholamine Neurotransmitter Regulatory Proteins Within The Prefrontal Cortex Of Rodents Following Traumatic Brain Injury, Eleni Papadopoulos, Christopher P. Knapp, Claire M. Corbett, Jessica Loweth, Rachel L. Navarra

Rowan-Virtua Research Day

Traumatic brain injury (TBI) resulting from impact to the head can cause long lasting impairments of cognitive processes that lead to increased risk-taking behavior in clinical populations. Our laboratory has recently shown that female, but not age-matched male, rats increase preference for risky choices after multiple experimentally-induced mild TBI’s. Our overarching goal is to understand the neural mechanisms underlying TBI-induced increases in risk-taking behavior.

The prefrontal cortex (PFC) plays a prominent role in risk-based decision making. Sub[1]regions of the PFC include the medial PFC (mPFC), the orbitofrontal cortex (OFC), and the anterior cingulate cortex (ACC), and these sub[1]regions play specific …


Interaction Of Fluorescent Probes With Sirtuin Proteins, James Fusco, Brian P Weiser May 2022

Interaction Of Fluorescent Probes With Sirtuin Proteins, James Fusco, Brian P Weiser

Rowan-Virtua Research Day

Sirtuins are a class of proteins belonging to the Sir2 (Silencing information regulator 2) family of NAD+ dependent protein lysine deacylases. Different Isoforms (SIRT1-SIRT7) differ in their specific deacylase activity and cellular location. They have roles in DNA repair, glucose metabolism, and cellular proliferation which make them highly desirable targets for carcinoma therapeutics. We previously used 1-aminoanthracene’s (AMA) fluorescent properties when bound with SIRT2 (Kd of 37 μM) to develop a high-throughput screen to identify novel ligands that inhibit SIRT2’s enzymatic activities. We hope to reveal other potential probes for future high-throughput screening with all the sirtuin isotopes. 1-AMA’s fluorescence …


Cdk8 Kinase Module Modifies Expression Of Specific Translation-Related Proteins Before And After Stress, Brittany Friedson, Katrina Cooper May 2022

Cdk8 Kinase Module Modifies Expression Of Specific Translation-Related Proteins Before And After Stress, Brittany Friedson, Katrina Cooper

Rowan-Virtua Research Day

Translation is tightly coupled to growth status. Efficient protein synthesis is necessary for cell growth in nutrient rich environments, while global translation inhibition combined with selective translation of stress-responsive mRNAs helps limit growth in times of stress. Environmental stress cues which inhibit the nutrient-sensing complex TORC1 are known to reduce general translation, but how does the cell alter protein synthesis machinery to adapt to these conditions? A few mechanisms to promote cell survival in nitrogen starvation include post-translational modification and selective degradation of specific mRNA-binding translation factors, as well as inhibition of activators of genes whose products are required for …


Ung2 And Rpa Activity On Ssdna-Dsdna Junctions, Kathy Chen, Sharon Greenwood, Brian P. Weiser May 2022

Ung2 And Rpa Activity On Ssdna-Dsdna Junctions, Kathy Chen, Sharon Greenwood, Brian P. Weiser

Rowan-Virtua Research Day

Uracil DNA glycosylase, or UNG2, is an enzyme that is involved in DNA repair. Its primary job is to eliminate harmful uracil bases from DNA strands. To do this, the enzyme is assisted by replication protein A (RPA). RPA helps UNG2 in the identification of uracil bases by targeting UNG2 activity near ssDNA-dsDNA junctions (1-3). The results from assays presented here agree with published findings that showed UNG2 is heavily targeted by RPA to uracil bases that are close to ssDNA-dsDNA junctions (for example, uracil located 9 bps from the junction as opposed to 33 bps) (1,2). However, these previous …


Conservation And Divergence In The Heterochronic Pathway Of C. Elegans And C. Briggsae, Maria Ivanova, Eric G. Moss May 2022

Conservation And Divergence In The Heterochronic Pathway Of C. Elegans And C. Briggsae, Maria Ivanova, Eric G. Moss

Rowan-Virtua Research Day

The heterochronic pathway of Caenorhabditis elegans is exemplary as a mechanism of developmental timing: mutations in genes of this pathway alter the relative timing of diverse developmental events independent of spatial or cell type specific regulation. It is the most thoroughly characterized developmental timing pathway known. Most of the heterochronic genes are conserved across great evolutionary time, and a few homologs seem to have developmental timing roles in certain contexts. The degree to which other organisms have explicit developmental timing mechanisms, and what factors comprise those mechanisms, isn’t generally known.

Developmental pathways evolve even if the resulting morphology remains the …