Open Access. Powered by Scholars. Published by Universities.®

Kinesiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Kinesiology

In Situ Muscle Power Differs Without Varying In Vitro Mechanical Properties In Two Insect Leg Muscles Innervated By The Same Motor Neuron, Anna N. Ahn, Kenneth Meijer, Robert J. Full Sep 2006

In Situ Muscle Power Differs Without Varying In Vitro Mechanical Properties In Two Insect Leg Muscles Innervated By The Same Motor Neuron, Anna N. Ahn, Kenneth Meijer, Robert J. Full

All HMC Faculty Publications and Research

The mechanical behavior of muscle during locomotion is often predicted by its anatomy, kinematics, activation pattern and contractile properties. The neuromuscular design of the cockroach leg provides a model system to examine these assumptions, because a single motor neuron innervates two extensor muscles operating at a single joint. Comparisons of the in situ measurements under in vivo running conditions of muscle 178 to a previously examined muscle (179) demonstrate that the same inputs (e.g. neural signal and kinematics) can result in different mechanical outputs. The same neural signal and kinematics, as determined during running, can result in different mechanical functions, …


Fiber Type-Specific Desmin Content In Human Single Muscle Fibers, Heidi Ghent Mar 2006

Fiber Type-Specific Desmin Content In Human Single Muscle Fibers, Heidi Ghent

Theses and Dissertations

Contractile and cytoskeletal protein concentrations have been shown to differ on the basis of fiber type in whole muscle homogenates. The purpose of this study was to compare the content of the intermediate filament protein, desmin, between type I and type IIa single muscle fibers from a mixed muscle in human subjects. Biopsies were taken from the vastus lateralis of six recreationally active males. Approximately 150 single muscle fibers were dissected from each sample and analyzed using SDS-PAGE to determine myosin heavy chain (MHC) composition. Following identification, muscle fibers were pooled into two groups (MHC I and MHC IIa). Desmin …