Open Access. Powered by Scholars. Published by Universities.®

Kinesiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Kinesiology

Mechanisms That Limit Oxidative Phosphorylation During High-Intensity Muscle Contractions In Vivo, Miles F. Bartlett Oct 2019

Mechanisms That Limit Oxidative Phosphorylation During High-Intensity Muscle Contractions In Vivo, Miles F. Bartlett

Doctoral Dissertations

Skeletal muscle oxidative capacity plays a critical role in human health and disease. Although current models of oxidative phosphorylation sufficiently describe skeletal muscle energetics during moderate-intensity contractions, much is still unknown about the mechanisms that control and limit oxidative phosphorylation during high-intensity contractions. In particular, the oxygen cost of force generation is augmented during exercise at workloads above the lactate threshold. Presently, it is unclear whether this augmentation in muscle oxygen consumption is driven by increased rates of oxidative ATP synthesis (ATPOX) or by decreases in the efficiency of ATPOX due to mitochondrial uncoupling. To address this …


The Effects Of Acidosis On Calcium Dependent Binding Of A Single Crossbridge, Matthew Unger Oct 2019

The Effects Of Acidosis On Calcium Dependent Binding Of A Single Crossbridge, Matthew Unger

Masters Theses

Intracellular acidosis is a putative agent of skeletal muscle fatigue, in part, because acidosis depresses the calcium (Ca2+) sensitivity and force production of muscle (18, 50). However, the molecular mechanisms behind this depression in Ca2+ sensitivity and force production are unknown. This gap in knowledge poses a significant challenge in generating a complete understanding of the fatigue process. To close this gap, the ability of myosin to bind to a single actin filament was measured under acidic conditions, in a laser trap assay, with and without regulatory proteins. Decreasing pH from 7.4 to 6.5 reduced the frequency …