Open Access. Powered by Scholars. Published by Universities.®

Immunology and Infectious Disease Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Immunology and Infectious Disease

Synthesis, In Vitro Characterization And Applications Of Novel 8-Aminoquinoline Fluorescent Probes, Adonis Mcqueen Oct 2017

Synthesis, In Vitro Characterization And Applications Of Novel 8-Aminoquinoline Fluorescent Probes, Adonis Mcqueen

USF Tampa Graduate Theses and Dissertations

Malaria is a parasitic disease that is caused by the plasmodium parasite. Plasmodium infection has affected man for thousands of years. With advances in drug discovery over the past century, malaria has evolved to possess resistance to most mainline therapeutics. This war of drug discovery vs plasmodium evolution continues to be fought to this very day, with attempts to eradicate malaria worldwide. Frontline treatments such as chloroquine, artemisinin, and atovaquone/proguanil have all seen parasitic resistance in strains of P. vivax as well as P. falciparum. While plasmodium possesses resistance to most classes of anti-malarials, the 8-aminoquinoline (8-AQ) class has …


Robust Odorant Recognition In Biological And Artificial Olfaction, Nalin Katta Aug 2017

Robust Odorant Recognition In Biological And Artificial Olfaction, Nalin Katta

McKelvey School of Engineering Theses & Dissertations

Accurate detection and identification of gases pose a number of challenges for chemical sensory systems. The stimulus space is enormous; volatile compounds vary in size, charge, functional groups, and isomerization among others. Furthermore, variability arises from intrinsic (poisoning of the sensors or degradation due to aging) and extrinsic (environmental: humidity, temperature, flow patterns) sources. Nonetheless, biological olfactory systems have been refined over time to overcome these challenges. The main objective of this work is to understand how the biological olfactory system deals with these challenges, and translate them to artificial olfaction to achieve comparable capabilities. In particular, this thesis focuses …


Analysis Of Antibody-Induced Plasmodium Falciparum Sporozoites Through Scanning Electron Microscopy, Sagorika Bera Mar 2017

Analysis Of Antibody-Induced Plasmodium Falciparum Sporozoites Through Scanning Electron Microscopy, Sagorika Bera

USF Tampa Graduate Theses and Dissertations

Malaria is a devastating disease that continues to affect millions of people worldwide every year. Specifically, Plasmodium falciparum is the most common human malaria parasite, particularly in sub-Saharan Africa. P. falciparum causes the most malignant and debilitating symptoms with the highest mortality and complication rates. Even with the worldwide efforts of many researchers and organizations, the road to discovering a vaccine has been difficult and challenging. Due do to the improvements in in vitro liver stage assays as well as rodent models of mammalian malaria, pre-erythrocytic stages of malaria have become a more accessible target for experimental studies. These vaccine …


A Potent Antimalarial Benzoxaborole Targets A Plasmodium Falciparum Cleavage And Polyadenylation Specificity Factor Homologue., Ebere Sonoiki, Caroline L. Ng, Marcus C. S. Lee, Denghui Guo, Yong-Kang Zhang, Yasheen Zhou, M. R. K. Alley, Vida Ahyong, Laura M. Sanz, Maria Jose Lafuente-Monasterio, Chen Dong, Patrick G. Schupp, Jiri Gut, Jenny Legac, Roland A. Cooper, Francisco-Javier Gamo, Joseph Derisi, Yvonne R. Freund, David A. Fidock, Philip J. Rosenthal Mar 2017

A Potent Antimalarial Benzoxaborole Targets A Plasmodium Falciparum Cleavage And Polyadenylation Specificity Factor Homologue., Ebere Sonoiki, Caroline L. Ng, Marcus C. S. Lee, Denghui Guo, Yong-Kang Zhang, Yasheen Zhou, M. R. K. Alley, Vida Ahyong, Laura M. Sanz, Maria Jose Lafuente-Monasterio, Chen Dong, Patrick G. Schupp, Jiri Gut, Jenny Legac, Roland A. Cooper, Francisco-Javier Gamo, Joseph Derisi, Yvonne R. Freund, David A. Fidock, Philip J. Rosenthal

Natural Sciences and Mathematics | Faculty Scholarship

Benzoxaboroles are effective against bacterial, fungal and protozoan pathogens. We report potent activity of the benzoxaborole AN3661 against Plasmodium falciparum laboratory-adapted strains (mean IC50 32 nM), Ugandan field isolates (mean ex vivo IC50 64 nM), and murine P. berghei and P. falciparum infections (day 4 ED90 0.34 and 0.57 mg kg-1, respectively). Multiple P. falciparum lines selected in vitro for resistance to AN3661 harboured point mutations in pfcpsf3, which encodes a homologue of mammalian cleavage and polyadenylation specificity factor subunit 3 (CPSF-73 or CPSF3). CRISPR-Cas9-mediated introduction of pfcpsf3 mutations into parental lines recapitulated AN3661 resistance. PfCPSF3 homology models placed these …