Open Access. Powered by Scholars. Published by Universities.®

Immunology and Infectious Disease Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Immunology and Infectious Disease

Pipecolic Acid And Novel Insights Into Cerebral Malaria, Akua E. Mensah May 2024

Pipecolic Acid And Novel Insights Into Cerebral Malaria, Akua E. Mensah

Theses

Cerebral malaria (CM), a severe manifestation of Plasmodium infection, prompts our investigation into the nuanced role of pipecolic acid in its pathophysiology. To unravel the molecular intricacies, we conducted in vitro lysine labeling techniques of mice infected with P. berghei ANKA parasites, and human P. falciparum grown in vitro, aiming to discern the impact of Plasmodium on pipecolic acid production. Previous observations indicated an elevation in pipecolic acid levels correlating with neurological decline in children with CM. In our study, confirming elevated pipecolic acid presence in the plasma and brain tissues of CM patients and the animal model of CM, …


Prenatal Choline Supplementation During Maternal Obesity Alters Offspring Response To Western Diets, Hunter W. Korsmo Sep 2022

Prenatal Choline Supplementation During Maternal Obesity Alters Offspring Response To Western Diets, Hunter W. Korsmo

Dissertations, Theses, and Capstone Projects

Maternal obesity has led to an increase in adverse offspring developmental outcomes and a greater risk for long-term metabolic diseases. Choline, a semi-essential nutrient, can be incorporated into phosphatidylcholine (PC) as well as sphingomyelin (SM) and donate its labile methyl group for the remethylation of homocysteine after choline is oxidized to betaine. Prenatal choline insufficiency has been related to maternal obesity and metabolic diseases, such as metabolic associated fatty liver disease (MAFLD). Choline may interact with maternal obesity to influence the programming offspring.

Chapter 1 presents an introduction of choline and the various clinical outcomes associated with choline supplementation during …


Mutational Analysis And Domain Characterization Of The Apolipoprotein L-1 Ion Channel, Charles M. Schaub Feb 2020

Mutational Analysis And Domain Characterization Of The Apolipoprotein L-1 Ion Channel, Charles M. Schaub

Dissertations, Theses, and Capstone Projects

The human innate immunity factor Apolipoprotein L-1 (APOL1) protects against Trypanosoma brucei brucei infection. Recent studies have shown recombinant APOL1 (rAPOL1) inserts into planar lipid bilayers at an acidic pH 5.6 and forms a cation-selective channel, which opens upon subsequent neutralization, pH 7.2. This corresponds with the pH changes APOL1 would encounter during endosome recycling, suggesting that APOL1 forms a pH-gated ion channel in the plasma membrane of the parasite, leading to uncontrolled ion flux and osmotic imbalance. However, structural and domain characteristics of the APOL1 channel are poorly understood, despite potential similarities to diphtheria and colicin toxins. Utilizing E. …


Innate Antibodies, Murine Models, And Evolution: A Study Of Trypanosome Lytic Factor Functions And Their Translational Applications, Joseph P. Verdi Sep 2019

Innate Antibodies, Murine Models, And Evolution: A Study Of Trypanosome Lytic Factor Functions And Their Translational Applications, Joseph P. Verdi

Dissertations, Theses, and Capstone Projects

Trypanosome lytic factors (TLFs) are primate-specific antimicrobial protein complexes that lyse African trypanosome parasites by delivering the channel-forming toxin APOL1 to the invading microorganisms. Human serum contains two TLFs that are delivered to the parasite by separate mechanisms, only one of which has been characterized. TLF1 is endocytosed by a receptor that is typically blocked by other serum factors in vivo, suggesting that TLF2 is the more relevant lytic factor in the context of trypanosome immunity. TLF2 is non-covalently associated with polyclonal immunoglobulin M (IgM) antibodies, which we report here to be involved in the uptake mechanism. The TLF2-IgMs …


Characterization Of Immunomodulatory Microbial Factors In Medicinal Plants, Kriti Kalpana Feb 2019

Characterization Of Immunomodulatory Microbial Factors In Medicinal Plants, Kriti Kalpana

Dissertations, Theses, and Capstone Projects

Medicinal plants are one of the biggest sources of natural products with therapeutic importance. There are currently over 28,000 plants with putative medicinal values. Plant-derived compounds have been explored extensively for various biological activities ranging from anti-cancer, immune-boosting to anti-inflammatory and anti-oxidant. Some of the most important therapeutic agents are of plant-origin, such as paclitaxel from Pacific yew (Taxus brevifolia) and artemisinin from qinghao su (a Chinese medicinal herb; a.k.a. Artemisia annua) to name a few.

The study presented in this thesis started out as classical pharmacognosy research, which focused on the identification of immunostimulatory factors in …


Characterizing Chromosomal Aberrations In Cells Deficient For Both Atm And Msh2, Yeliz Inalman Jan 2019

Characterizing Chromosomal Aberrations In Cells Deficient For Both Atm And Msh2, Yeliz Inalman

Dissertations and Theses

Ataxia telangiectasia mutated (ATM) and mutS homologue 2 (MSH2) are important DNA repair proteins that participate in DNA repair pathways to maintain genomic integrity. Mice deficient for ATM and MSH2 mice are viable. However, ATM-/- mice show growth retardation, neurological defects, and spontaneous lymphomagenesis. MSH2-/- mice suffer from aggressive lymphoid tumors between two to five months of age and have increased microsatellite instability, which predisposes MSH2-/- mice to carcinomas. However, mice deficient in both ATM and MSH2 are unable to survive beyond postnatal day 21 (P21). The observed lethality in ATM-/-MSH2-/- mice may result …


Evidence For Organelle-Like Extracellular Vesicles From A Parasite Of Drosophila And Their Function In Suppressing Host Immunity, Mary Heavner May 2018

Evidence For Organelle-Like Extracellular Vesicles From A Parasite Of Drosophila And Their Function In Suppressing Host Immunity, Mary Heavner

Dissertations, Theses, and Capstone Projects

Parasitic wasps act as keystone species in natural ecosystems. Adept at suppressing immunity of their insect hosts, these natural enemies of insect pests are used for biocontrol in many parts of the world. Female parasitic wasps of the closely-related species Leptopilina heterotoma (Lh), a generalist of many Drosophilia flies, and Leptopilina boulardi (Lb), a specialist on flies of the melanogaster subgroup, produce venom and virus-like particles (VLPs) in their long gland-reservoir complexes, a secretory organ connected to ovipositors. Venom and VLPs are deposited, along with wasp eggs, into the body of the wasp’s larval fly host …


Roles Of Igh Intronic Enhancer Eμ In Clonal Selection At The Pre-B To Immature B Cell Transition And In The Elimination Of Autoreactive B Cells, Cheng Peng Feb 2014

Roles Of Igh Intronic Enhancer Eμ In Clonal Selection At The Pre-B To Immature B Cell Transition And In The Elimination Of Autoreactive B Cells, Cheng Peng

Dissertations, Theses, and Capstone Projects

The immunoglobulin heavy chain locus (Igh ) intronic enhancer, Eμ, enhances transcription of recombined Igh genes. We have previously shown that in mice with an Eμ-deficient Igh allele (V H δa ), Igμ is expressed at half of the wild-type levels in pre-B cells. We also described an Eμ-dependent "check-point", operating at the pre-B to immature B cell transition, for heavy chain allelic exclusion. We now show that deletion of Eμ results in a smaller immature B cell compartment, and the pre-BCR/BCR signaling is diminished in pre-B cells as a result of the reduced Igμ levels, making it …