Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Genetics and Genomics

Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung Apr 2016

Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung

Open Access Dissertations

In neurons, normal distribution and selective removal of mitochondria are essential for preserving compartmentalized cellular function. Parkin, an E3 ubiquitin ligase associated with familial Parkinson’s disease, has been implicated in mitochondrial dynamics and removal. However, it is not clear how Parkin plays a role in mitochondrial turnover in vivo, and whether the mature neurons possess a compartmentalized Parkin-dependent mitochondrial life cycle. Using the live Drosophila nervous system, here, I investigate the involvement of Parkin in mitochondrial dynamics; organelle distribution, morphology and removal. Parkin deficient animals displayed less number of axonal mitochondria without disturbing organelle motility behaviors, morphology and metabolic state. …


Role Of Bec-1/Beclin 1 And Autophagy Genes In C.Elegans Germline Cell Proliferation, Kristina Ames Feb 2016

Role Of Bec-1/Beclin 1 And Autophagy Genes In C.Elegans Germline Cell Proliferation, Kristina Ames

Dissertations, Theses, and Capstone Projects

Autophagy is an evolutionary conserved process involved in the cellular adaptation to stress and basal levels of autophagy are crucial for cellular metabolism and homeostasis. Cellular recycling by autophagy is characterized by the formation of distinctive double-membrane vesicles (autophagosomes) that engulf unnecessary cytoplasmic components, such as organelles and long-lived proteins. Failure to remove protein aggregates and/or damaged organelles, via autophagy, has been implicated in various medical conditions such as liver disease, neurodegenerative diseases and cancer. Autophagy may suppress or promote cellular proliferation in tumors, depending on the type and metabolic state of the cell, where autophagy is generally believed to …