Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Genetics and Genomics

Excision Dynamics Of Vibrio Pathogenicity Island-2 From Vibrio Cholerae: Role Of A Recombination Directionality Factor Vefa, Salvador Almagro-Moreno, Michael G. Napolitano, E. Fidelma Boyd Nov 2010

Excision Dynamics Of Vibrio Pathogenicity Island-2 From Vibrio Cholerae: Role Of A Recombination Directionality Factor Vefa, Salvador Almagro-Moreno, Michael G. Napolitano, E. Fidelma Boyd

Dartmouth Scholarship

Vibrio Pathogenicity Island-2 (VPI-2) is a 57 kb region present in choleragenic V. cholerae isolates that is required for growth on sialic acid as a sole carbon source. V. cholerae non-O1/O139 pathogenic strains also contain VPI-2, which in addition to sialic acid catabolism genes also encodes a type 3 secretion system in these strains. VPI-2 integrates into chromosome 1 at a tRNA-serine site and encodes an integrase intV2 (VC1758) that belongs to the tyrosine recombinase family. ntV2 is required for VPI-2 excision from chromosome 1, which occurs at very low levels, and formation of a non-replicative circular intermediate.


The Armadillo Repeat Protein Pf16 Is Essential For Flagellar Structure And Function In Plasmodium Male Gametes, Ursula Straschil, Arthur M. Talman, David J. P. Ferguson, Karen A. Bunting, Zhengyao Xu, Elizabeth Bailes, Robert E. Sinden, Anthony A. Holder, Elizabeth F. Smith Sep 2010

The Armadillo Repeat Protein Pf16 Is Essential For Flagellar Structure And Function In Plasmodium Male Gametes, Ursula Straschil, Arthur M. Talman, David J. P. Ferguson, Karen A. Bunting, Zhengyao Xu, Elizabeth Bailes, Robert E. Sinden, Anthony A. Holder, Elizabeth F. Smith

Dartmouth Scholarship

Malaria, caused by the apicomplexan parasite Plasmodium, threatens 40% of the world's population. Transmission between vertebrate and insect hosts depends on the sexual stages of the life-cycle. The male gamete of Plasmodium parasite is the only developmental stage that possesses a flagellum. Very little is known about the identity or function of proteins in the parasite's flagellar biology. Here, we characterise a Plasmodium PF16 homologue using reverse genetics in the mouse malaria parasite Plasmodium berghei. PF16 is a conserved Armadillo-repeat protein that regulates flagellar structure and motility in organisms as diverse as green algae and mice. We show that …


Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros Sep 2010

Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Photoadaptation, the ability to attenuate a light response on prolonged light exposure while remaining sensitive to escalating changes in light intensity, is essential for organisms to decipher time information appropriately, yet the underlying molecular mechanisms are poorly understood. In Neurospora crassa, VIVID (VVD), a small LOV domain containing blue-light photoreceptor protein, affects photoadaptation for most if not all light-responsive genes. We report that there is a physical interaction between VVD and the white collar complex (WCC), the primary blue-light photoreceptor and the transcription factor complex that initiates light-regulated transcriptional responses in Neurospora. Using two previously characterized VVD mutants, we show …


Constraint-Based Model Of Shewanella Oneidensis Mr-1 Metabolism: A Tool For Data Analysis And Hypothesis Generation, Grigoriy E. Pinchuk, Eric A. Hill, Oleg V. Geydebrekht, Jessica De Ingeniis, Xiaolin Zhang, Andrei Osterman, James H. Scott Jun 2010

Constraint-Based Model Of Shewanella Oneidensis Mr-1 Metabolism: A Tool For Data Analysis And Hypothesis Generation, Grigoriy E. Pinchuk, Eric A. Hill, Oleg V. Geydebrekht, Jessica De Ingeniis, Xiaolin Zhang, Andrei Osterman, James H. Scott

Dartmouth Scholarship

Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox) stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and utilization of electron transfer networks, as well as central and peripheral carbon metabolism. To understand how Shewanella oneidensis MR-1 utilizes its resources, the metabolic network was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based …


Natural Competence In Thermoanaerobacter And Thermoanaerobacterium Species, A Joe Shaw, David A. Hogsett, Lee R. Lynd May 2010

Natural Competence In Thermoanaerobacter And Thermoanaerobacterium Species, A Joe Shaw, David A. Hogsett, Lee R. Lynd

Dartmouth Scholarship

Low-G+C thermophilic obligate anaerobes in the class Clostridia are considered among the bacteria most resistant to genetic engineering due to the difficulty of introducing foreign DNA, thus limiting the ability to study and exploit their native hydrolytic and fermentative capabilities. Here, we report evidence of natural genetic competence in 13 Thermoanaerobacter and Thermoanaerobacterium strains previously believed to be difficult to transform or genetically recalcitrant.

In Thermoanaerobacterium saccharolyticum JW/SL-YS485, natural competence- mediated DNA incorporation occurs during the exponential growth phase with both replicating plasmid and homologous recombination-based integration, and circular or linear DNA. In T. saccharolyticum, disruptions of genes similar to …


Functional Characterization Of Mat1-1-Specific Mating-Type Genes In The Homothallic Ascomycete Sordaria Macrospora Provides New Insights Into Essential And Nonessential Sexual Regulators, V. Klix, M. Nowrousian, C. Ringelberg, J. J. Loros Apr 2010

Functional Characterization Of Mat1-1-Specific Mating-Type Genes In The Homothallic Ascomycete Sordaria Macrospora Provides New Insights Into Essential And Nonessential Sexual Regulators, V. Klix, M. Nowrousian, C. Ringelberg, J. J. Loros

Dartmouth Scholarship

Mating-type genes in fungi encode regulators of mating and sexual development. Heterothallic ascomycete species require different sets of mating-type genes to control nonself-recognition and mating of compatible partners of different mating types. Homothallic (self-fertile) species also carry mating-type genes in their genome that are essential for sexual development. To analyze the molecular basis of homothallism and the role of mating-type genes during fruiting-body development, we deleted each of the three genes, SmtA-1 (MAT1-1-1), SmtA-2 (MAT1-1-2), and SmtA-3 (MAT1-1-3), contained in the MAT1-1 part of the mating-type locus of the homothallic ascomycete species Sordaria macrospora. Phenotypic analysis of deletion mutants revealed …


Temporal Regulation Of The Muscle Gene Cascade By Macho1 And Tbx6 Transcription Factors In Ciona Intestinalis, Jamie E. Kugler, Stefan Gazdoiu, Izumi Oda-Ishii, Yale J. Passamaneck, Albert J. Erives, Anna Di Gregorio Apr 2010

Temporal Regulation Of The Muscle Gene Cascade By Macho1 And Tbx6 Transcription Factors In Ciona Intestinalis, Jamie E. Kugler, Stefan Gazdoiu, Izumi Oda-Ishii, Yale J. Passamaneck, Albert J. Erives, Anna Di Gregorio

Dartmouth Scholarship

For over a century, muscle formation in the ascidian embryo has been representative of 'mosaic' development. The molecular basis of muscle-fate predetermination has been partly elucidated with the discovery of Macho1, a maternal zinc-finger transcription factor necessary and sufficient for primary muscle development, and of its transcriptional intermediaries Tbx6b and Tbx6c. However, the molecular mechanisms by which the maternal information is decoded by cis-regulatory modules (CRMs) associated with muscle transcription factor and structural genes, and the ways by which a seamless transition from maternal to zygotic transcription is ensured, are still mostly unclear. By combining misexpression assays with CRM analyses, …


Genetic And Molecular Characterization Of A Cryptochrome From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Chen-Hui Chen, William J. Belden, Cornelia Madeti Mar 2010

Genetic And Molecular Characterization Of A Cryptochrome From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Chen-Hui Chen, William J. Belden, Cornelia Madeti

Dartmouth Scholarship

In plants and animals, cryptochromes function as either photoreceptors or circadian clock components. We have examined the cryptochrome from the filamentous fungus Neurospora crassa and demonstrate that Neurospora cry encodes a DASH-type cryptochrome that appears capable of binding flavin adenine dinucleotide (FAD) and methenyltetrahydrofolate (MTHF). The cry transcript and CRY protein levels are strongly induced by blue light in a wc-1-dependent manner, and cry transcript is circadianly regulated, with a peak abundance opposite in phase to frq. Neither deletion nor overexpression of cry appears to perturb the free-running circadian clock. However, cry disruption knockout mutants show a small phase delay …


Farnesol Induces Hydrogen Peroxide Resistance In Candida Albicans Yeast By Inhibiting The Ras-Cyclic Amp Signaling Pathway, Aurélie Deveau, Amy E. Piispanen, Angelyca A. Jackson, Deborah A. Hogan Jan 2010

Farnesol Induces Hydrogen Peroxide Resistance In Candida Albicans Yeast By Inhibiting The Ras-Cyclic Amp Signaling Pathway, Aurélie Deveau, Amy E. Piispanen, Angelyca A. Jackson, Deborah A. Hogan

Dartmouth Scholarship

Farnesol, a Candida albicans cell-cell signaling molecule that participates in the control of morphology, has an additional role in protection of the fungus against oxidative stress. In this report, we show that although farnesol induces the accumulation of intracellular reactive oxygen species (ROS), ROS generation is not necessary for the induction of catalase (Cat1)-mediated oxidative-stress resistance. Two antioxidants, α-tocopherol and, to a lesser extent, ascorbic acid effectively reduced intracellular ROS generation by farnesol but did not alter farnesol-induced oxidative-stress resistance. Farnesol inhibits the Ras1-adenylate cyclase (Cyr1) signaling pathway to achieve its effects on morphology under hypha-inducing conditions, and we demonstrate …