Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Genetics and Genomics

Evolutionary And Functional Insights Into The Mechanism Underlying High-Altitude Adaptation Of Deer Mouse Hemoglobin, Jay F. Storz, Amy M. Runck, Stephen J. Sabatino, John K. Kelly, Nuno Ferrand, Hideaki Moriyama, Roy E. Weber, Angela Fago Aug 2009

Evolutionary And Functional Insights Into The Mechanism Underlying High-Altitude Adaptation Of Deer Mouse Hemoglobin, Jay F. Storz, Amy M. Runck, Stephen J. Sabatino, John K. Kelly, Nuno Ferrand, Hideaki Moriyama, Roy E. Weber, Angela Fago

Jay F. Storz Publications

Adaptive modifications of heteromeric proteins may involve genetically based changes in single subunit polypeptides or parallel changes in multiple genes that encode distinct, interacting subunits. Here we investigate these possibilities by conducting a combined evolutionary and functional analysis of duplicated globin genes in natural populations of deer mice (Peromyscus maniculatus) that are adapted to different elevational zones. A multilocus analysis of nucleotide polymorphism and linkage disequilibrium revealed that high-altitude adaptation of deer mouse hemoglobin involves parallel functional differentiation at multiple unlinked gene duplicates: two α-globin paralogs on chromosome 8 and two β-globin paralogs on chromosome 1. Differences in …


The Mechanism Of Expansion And The Volatility It Created In Three Pheromone Gene Clusters In The Mouse (Mus Musculus) Genome, Robert C. Karn, Christina M. Laukaitis Jan 2009

The Mechanism Of Expansion And The Volatility It Created In Three Pheromone Gene Clusters In The Mouse (Mus Musculus) Genome, Robert C. Karn, Christina M. Laukaitis

Scholarship and Professional Work - LAS

Three families of proteinaceous pheromones have been described in the house mouse: androgen-binding proteins (ABPs), exocrine gland–secreting peptides (ESPs), and major urinary proteins (MUPs), each of which is thought to communicate different information. All three are encoded by large gene clusters in different regions of the mouse genome, clusters that have expanded dramatically during mouse evolutionary history. We report copy number variation among the most recently duplicated Abp genes, which suggests substantial volatility in this gene region. It appears that groups of these genes behave as low copy repeats (LCRs), duplicating as relatively large blocks of genes by nonallelic homologous …


Evolution Of Duplicated Β-Globin Genes And The Structural Basis Of Hemoglobin Isoform Differentiation In Mus, Amy M. Runck, Hideaki Moriyama, Jay F. Storz Jan 2009

Evolution Of Duplicated Β-Globin Genes And The Structural Basis Of Hemoglobin Isoform Differentiation In Mus, Amy M. Runck, Hideaki Moriyama, Jay F. Storz

Jay F. Storz Publications

The functional diversification of multigene families may be strongly influenced by mechanisms of concerted evolution such as interparalog gene conversion. The β-globin gene family of house mice (genus Mus) represents an especially promising system for evaluating the effects of gene conversion on the functional divergence of duplicated genes. Whereas the majority of mammalian species possess tandemly duplicated copies of the adult β-globin gene that are identical in sequence, natural populations of house mice are often polymorphic for distinct two-locus haplotypes that differ in levels of functional divergence between duplicated β-globin genes, HBB-T1 and HBB-T2. Here, we use a phylogenetic …


Origin And Ascendancy Of A Chimeric Fusion Gene: The Β/Δ-Globin Gene Of Paenungulate Mammals, Juan C. Opazo, Angela M. Sloan, Kevin L. Campbell, Jay F. Storz Jan 2009

Origin And Ascendancy Of A Chimeric Fusion Gene: The Β/Δ-Globin Gene Of Paenungulate Mammals, Juan C. Opazo, Angela M. Sloan, Kevin L. Campbell, Jay F. Storz

Jay F. Storz Publications

The δ-globin gene (HBD) of eutherian mammals exhibits a propensity for recombinational exchange with the closely linked β-globin gene (HBB) and has been independently converted by the HBB gene in multiple lineages. Here we report the presence of a chimeric β/δ fusion gene in the African elephant (Loxodonta africana) that was created by unequal crossing-over between misaligned HBD and HBB paralogs. The recombinant chromosome that harbors the β/δ fusion gene in elephants is structurally similar to the ‘‘anti-Lepore’’ duplication mutant of humans (the reciprocal exchange product of the hemoglobin Lepore deletion mutant). However, the situation in …