Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Genetics and Genomics

Spatially Uniform Relieff (Surf) For Computationally-Efficient Filtering Of Gene-Gene Interactions, Casey S. Greene, Nadia M. Penrod, Jeff Kiralis, Jason H. Moore Sep 2009

Spatially Uniform Relieff (Surf) For Computationally-Efficient Filtering Of Gene-Gene Interactions, Casey S. Greene, Nadia M. Penrod, Jeff Kiralis, Jason H. Moore

Dartmouth Scholarship

Genome-wide association studies are becoming the de facto standard in the genetic analysis of common human diseases. Given the complexity and robustness of biological networks such diseases are unlikely to be the result of single points of failure but instead likely arise from the joint failure of two or more interacting components. The hope in genome-wide screens is that these points of failure can be linked to single nucleotide polymorphisms (SNPs) which confer disease susceptibility. Detecting interacting variants that lead to disease in the absence of single-gene effects is difficult however, and methods to exhaustively analyze sets of these variants …


Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy May 2009

Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy

Dartmouth Scholarship

Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however, behave distinctively in terms of their periods and phases in response to external influences such as light, temperature, nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of the cell cycle can be attributed to the cell cycle …


Multifactor Dimensionality Reduction Analysis Identifies Specific Nucleotide Patterns Promoting Genetic Polymorphisms, Eric Arehart, Scott Gleim, Bill White, John Hwa, Jason H. Moore Mar 2009

Multifactor Dimensionality Reduction Analysis Identifies Specific Nucleotide Patterns Promoting Genetic Polymorphisms, Eric Arehart, Scott Gleim, Bill White, John Hwa, Jason H. Moore

Dartmouth Scholarship

The fidelity of DNA replication serves as the nidus for both genetic evolution and genomic instability fostering disease. Single nucleotide polymorphisms (SNPs) constitute greater than 80% of the genetic variation between individuals. A new theory regarding DNA replication fidelity has emerged in which selectivity is governed by base-pair geometry through interactions between the selected nucleotide, the complementary strand, and the polymerase active site. We hypothesize that specific nucleotide combinations in the flanking regions of SNP fragments are associated with mutation.