Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

2003

MicroRNAs

Articles 1 - 4 of 4

Full-Text Articles in Genetics and Genomics

Role Of Micrornas In Plant And Animal Development, Victor Ambros, James Carrington Jul 2003

Role Of Micrornas In Plant And Animal Development, Victor Ambros, James Carrington

Victor R. Ambros

Small RNAs, including microRNAs (miRNAs) and short interfering RNAs (siRNAs), are key components of an evolutionarily conserved system of RNA-based gene regulation in eukaryotes. They are involved in many molecular interactions, including defense against viruses and regulation of gene expression during development. miRNAs interfere with expression of messenger RNAs encoding factors that control developmental timing, stem cell maintenance, and other developmental and physiological processes in plants and animals. miRNAs are negative regulators that function as specificity determinants, or guides, within complexes that inhibit protein synthesis (animals) or promote degradation (plants) of mRNA targets.


Microrna Pathways In Flies And Worms: Growth, Death, Fat, Stress, And Timing, Victor Ambros Jun 2003

Microrna Pathways In Flies And Worms: Growth, Death, Fat, Stress, And Timing, Victor Ambros

Victor R. Ambros

Drosophila geneticists have uncovered roles for microRNAs in the coordination of cell proliferation and cell death during development, and in stress resistance and fat metabolism. In C. elegans, a homolog of the well-known fly developmental regulator hunchback acts downstream of the microRNAs lin-4 and let-7 in a pathway controlling developmental timing.


Micrornas And Other Tiny Endogenous Rnas In C. Elegans, Victor Ambros, Rosalind Lee, Ann Lavanway, Peter Williams, David Jewell May 2003

Micrornas And Other Tiny Endogenous Rnas In C. Elegans, Victor Ambros, Rosalind Lee, Ann Lavanway, Peter Williams, David Jewell

Victor R. Ambros

BACKGROUND: MicroRNAs (miRNAs) are small noncoding RNAs that are processed from hairpin precursor transcripts by Dicer. miRNAs probably inhibit translation of mRNAs via imprecise antisense base-pairing. Small interfering RNAs (siRNAs) are similar in size to miRNAs, but they recognize targets by precise complementarity and elicit RNA-mediated interference (RNAi). We employed cDNA sequencing and comparative genomics to identify additional C. elegans small RNAs with properties similar to miRNAs and siRNAs. RESULTS: We found three broad classes of small RNAs in C. elegans: (1) 21 new miRNA genes (we estimate that C. elegans contains approximately 100 distinct miRNA genes, about 30% of …


A Uniform System For Microrna Annotation, Victor R. Ambros, Bonnie Bartel, David P. Bartel, Christopher B. Burge, James C. Carrington, Xuemei Chen, Gideon Dreyfuss, Sean R. Eddy, Sam Griffiths-Jones, Mhairi Marshall, Marjori Matzke, Gary Ruvkun, Thomas Tuschl Feb 2003

A Uniform System For Microrna Annotation, Victor R. Ambros, Bonnie Bartel, David P. Bartel, Christopher B. Burge, James C. Carrington, Xuemei Chen, Gideon Dreyfuss, Sean R. Eddy, Sam Griffiths-Jones, Mhairi Marshall, Marjori Matzke, Gary Ruvkun, Thomas Tuschl

Victor R. Ambros

MicroRNAs (miRNAs) are small noncoding RNA gene products about 22 nt long that are processed by Dicer from precursors with a characteristic hairpin secondary structure. Guidelines are presented for the identification and annotation of new miRNAs from diverse organisms, particularly so that miRNAs can be reliably distinguished from other RNAs such as small interfering RNAs. We describe specific criteria for the experimental verification of miRNAs, and conventions for naming miRNAs and miRNA genes. Finally, an online clearinghouse for miRNA gene name assignments is provided by the Rfam database of RNA families.