Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

2000

Scholarship and Professional Work – COPHS

Articles 1 - 2 of 2

Full-Text Articles in Genetics and Genomics

Cell Cycle-Dependent Binding Of Yeast Heat Shock Factor To Nucleosomes, Christina Bourgeois Venturi, Alexander M. Erkine, David S. Gross Jan 2000

Cell Cycle-Dependent Binding Of Yeast Heat Shock Factor To Nucleosomes, Christina Bourgeois Venturi, Alexander M. Erkine, David S. Gross

Scholarship and Professional Work – COPHS

In the nucleus, transcription factors must contend with the presence of chromatin in order to gain access to their cognate regulatory sequences. As most nuclear DNA is assembled into nucleosomes, activators must either invade a stable, preassembled nucleosome or preempt the formation of nucleosomes on newly replicated DNA, which is transiently free of histones. We have investigated the mechanism by which heat shock factor (HSF) binds to target nucleosomal heat shock elements (HSEs), using as our model a dinucleosomal heat shock promoter (hsp82-ΔHSE1). We find that activated HSF cannot bind a stable, sequence-positioned nucleosome in G1-arrested …


The Skn7 Response Regulator Of Saccharomyces Cerevisiae Interacts With Hsf1 In Vivo And Is Required For The Induction Of Heat Shock Genes By Oxidative Stress, Desmond C. Raitt, Anthony L. Johnson, Alexander M. Erkine, Kozo Makino, Brian Morgan, David S. Gross, Leland H. Johnston Jan 2000

The Skn7 Response Regulator Of Saccharomyces Cerevisiae Interacts With Hsf1 In Vivo And Is Required For The Induction Of Heat Shock Genes By Oxidative Stress, Desmond C. Raitt, Anthony L. Johnson, Alexander M. Erkine, Kozo Makino, Brian Morgan, David S. Gross, Leland H. Johnston

Scholarship and Professional Work – COPHS

The Skn7 response regulator has previously been shown to play a role in the induction of stress-responsive genes in yeast, e.g., in the induction of the thioredoxin gene in response to hydrogen peroxide. The yeast Heat Shock Factor, Hsf1, is central to the induction of another set of stress-inducible genes, namely the heat shock genes. These two regulatory trans-activators, Hsf1 and Skn7, share certain structural homologies, particularly in their DNA-binding domains and the presence of adjacent regions of coiled-coil structure, which are known to mediate protein–protein interactions. Here, we provide evidence that Hsf1 and Skn7 interact in vitro and …