Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Genetics and Genomics

Successful Genotyping Of Microsatellites In The Woolly Mammoth, Yasuko Ishida, Alfred L. Roca, Stephen Fratpietro, Alex D. Greenwood Jan 2012

Successful Genotyping Of Microsatellites In The Woolly Mammoth, Yasuko Ishida, Alfred L. Roca, Stephen Fratpietro, Alex D. Greenwood

Biological Sciences Faculty Publications

Genetic analyses using ancient DNA from Pleistocene and early Holocene fossils have largely relied on mitochondrial DNA (mtDNA) sequences. Among woolly mammoths, Mammuthus primigenius, mtDNA analyses have identified 2 distinct clades (I and II) that diverged 1-2 Ma. Here, we establish that microsatellite markers can be effective on Pleistocene samples, successfully genotyping woolly mammoth specimens at 2 loci. Although significant differentiation at the 2 microsatellite loci was not detected between 16 clade I and 4 clade II woolly mammoths, our results demonstrate that the nuclear population structure of Pleistocene species can be examined using fast-evolving nuclear microsatellite markers.


Ancient Dna Identification Of Early 20th Century Simian T-Cell Leukemia Virus Type 1, Sebastien Calvignac, Jean-Michel Terme, Shannon M. Hensley, Pierre Jalinot, Alex D. Greenwood, Catherine Hanni Jan 2008

Ancient Dna Identification Of Early 20th Century Simian T-Cell Leukemia Virus Type 1, Sebastien Calvignac, Jean-Michel Terme, Shannon M. Hensley, Pierre Jalinot, Alex D. Greenwood, Catherine Hanni

Biological Sciences Faculty Publications

The molecular identification of proviruses from ancient tissues (and particularly from bones) remains a contentious issue. It can be expected that the copy number of proviruses will be low, which magnifies the risk of contamination with retroviruses from exogenous sources. To assess the feasibility of paleoretrovirological studies, we attempted to identify proviruses from early 20th century bones of museum specimens while following a strict ancient DNA methodology. Simian T-cell leukemia virus type 1 sequences were successfully obtained and authenticated from a Chlorocebus pygerythrus specimen. This represents the first clear evidence that it will be possible to use museum specimens to …