Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Genetics and Genomics

Tox Regulates Growth, Dna Repair, And Genomic Instability In T-Cell Acute Lymphoblastic Leukemia, Riadh Lobbardi, Jordan Pinder, Barbara Martinez-Pastor, Marina Theodorou, Jessica S. Blackburn, Brian J. Abraham, Yuka Namiki, Marc Mansour, Nouran S. Abdelfattah, Aleksey Molodtsov, Gabriela Alexe, Debra Toiber, Manon De Waard, Esha Jain, Myriam Boukhali, Mattia Lion, Deepak Bhere, Khalid Shah, Alejandro Gutierrez, Kimberly Stegmaier, Lewis B. Silverman, Ruslan I. Sadreyev, John M. Asara, Marjorie A. Oettinger, Wilhelm Haas, A. Thomas Look, Richard A. Young, Raul Mostoslavsky, Graham Dellaire, David M. Langenau Nov 2017

Tox Regulates Growth, Dna Repair, And Genomic Instability In T-Cell Acute Lymphoblastic Leukemia, Riadh Lobbardi, Jordan Pinder, Barbara Martinez-Pastor, Marina Theodorou, Jessica S. Blackburn, Brian J. Abraham, Yuka Namiki, Marc Mansour, Nouran S. Abdelfattah, Aleksey Molodtsov, Gabriela Alexe, Debra Toiber, Manon De Waard, Esha Jain, Myriam Boukhali, Mattia Lion, Deepak Bhere, Khalid Shah, Alejandro Gutierrez, Kimberly Stegmaier, Lewis B. Silverman, Ruslan I. Sadreyev, John M. Asara, Marjorie A. Oettinger, Wilhelm Haas, A. Thomas Look, Richard A. Young, Raul Mostoslavsky, Graham Dellaire, David M. Langenau

Molecular and Cellular Biochemistry Faculty Publications

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes. Using a transgenic screen in zebrafish, thymocyte selection–associated high mobility group box protein (TOX) was uncovered as a collaborating oncogenic driver that accelerated T-ALL onset by expanding the initiating pool of transformed clones and elevating genomic instability. TOX is highly expressed in a majority of human T-ALL and is required for proliferation and continued xenograft growth in mice. Using a wide array of functional analyses, we uncovered that TOX binds directly to KU70/80 and suppresses recruitment of this complex to DNA breaks to inhibit nonhomologous end joining (NHEJ) repair. …


Systems Biology Approach To Late-Onset Alzheimer's Disease Genome-Wide Association Study Identifies Novel Candidate Genes Validated Using Brain Expression Data And Caenorhabditis Elegans Experiments, Shubhabrata Mukherjee, Joshua C. Russell, Daniel T. Carr, Jeremy D. Burgess, Mariet Allen, Daniel J. Serie, Kevin L. Boehme, John S. K. Kauwe, Adam C. Naj, David W. Fardo, Dennis W. Dickson, Thomas J. Montine, Nilufer Ertekin-Taner, Matt R. Kaeberlein, Paul K. Crane Oct 2017

Systems Biology Approach To Late-Onset Alzheimer's Disease Genome-Wide Association Study Identifies Novel Candidate Genes Validated Using Brain Expression Data And Caenorhabditis Elegans Experiments, Shubhabrata Mukherjee, Joshua C. Russell, Daniel T. Carr, Jeremy D. Burgess, Mariet Allen, Daniel J. Serie, Kevin L. Boehme, John S. K. Kauwe, Adam C. Naj, David W. Fardo, Dennis W. Dickson, Thomas J. Montine, Nilufer Ertekin-Taner, Matt R. Kaeberlein, Paul K. Crane

Biostatistics Faculty Publications

Introduction—We sought to determine whether a systems biology approach may identify novel late-onset Alzheimer's disease (LOAD) loci.

Methods—We performed gene-wide association analyses and integrated results with human protein-protein interaction data using network analyses. We performed functional validation on novel genes using a transgenic Caenorhabditis elegans Aβ proteotoxicity model and evaluated novel genes using brain expression data from people with LOAD and other neurodegenerative conditions.

Results—We identified 13 novel candidate LOAD genes outside chromosome 19. Of those, RNA interference knockdowns of the C. elegans orthologs of UBC, NDUFS3, EGR1, and ATP5H were associated with Aβ …


Mitochondrial Phylogenomics Of Hemiptera Reveals Adaptive Innovations Driving The Diversification Of True Bugs, Hu Li, John Moeller Leavengood Jr., Eric G. Chapman, Daniel Burkhardt, Fan Song, Pei Jiang, Jinpeng Liu, Xuguo Zhou, Wanzhi Cai Sep 2017

Mitochondrial Phylogenomics Of Hemiptera Reveals Adaptive Innovations Driving The Diversification Of True Bugs, Hu Li, John Moeller Leavengood Jr., Eric G. Chapman, Daniel Burkhardt, Fan Song, Pei Jiang, Jinpeng Liu, Xuguo Zhou, Wanzhi Cai

Entomology Faculty Publications

Hemiptera, the largest non-holometabolous order of insects, represents approximately 7% of metazoan diversity. With extraordinary life histories and highly specialized morphological adaptations, hemipterans have exploited diverse habitats and food sources through approximately 300 Myr of evolution. To elucidate the phylogeny and evolutionary history of Hemiptera, we carried out the most comprehensive mitogenomics analysis on the richest taxon sampling to date covering all the suborders and infraorders, including 34 newly sequenced and 94 published mitogenomes. With optimized branch length and sequence heterogeneity, Bayesian analyses using a site-heterogeneous mixture model resolved the higher-level hemipteran phylogeny as (Sternorrhyncha, (Auchenorrhyncha, (Coleorrhyncha, Heteroptera))). Ancestral character …


The Activity Of The Serotonin Receptor 2c Is Regulated By Alternative Splicing, Stefan Stamm, Samuel B. Gruber, Alexander G. Rabchevsky, Ronald B. Emeson Sep 2017

The Activity Of The Serotonin Receptor 2c Is Regulated By Alternative Splicing, Stefan Stamm, Samuel B. Gruber, Alexander G. Rabchevsky, Ronald B. Emeson

Molecular and Cellular Biochemistry Faculty Publications

The central nervous system-specific serotonin receptor 2C (5HT2C) controls key physiological functions, such as food intake, anxiety, and motoneuron activity. Its deregulation is involved in depression, suicidal behavior, and spasticity, making it the target for antipsychotic drugs, appetite controlling substances, and possibly anti-spasm agents. Through alternative pre-mRNA splicing and RNA editing, the 5HT2C gene generates at least 33 mRNA isoforms encoding 25 proteins. The 5HT2C is a G-protein coupled receptor that signals through phospholipase C, influencing the expression of immediate/early genes like c-fos. Most 5HT2C isoforms show constitutive activity, i.e., signal without ligand binding. The constitutive activity of 5HT2C is …


Ion Channel Signaling Influences Cellular Proliferation And Phagocyte Activity During Axolotl Tail Regeneration, Brandon M. Franklin, S. Randal Voss, Jeffrey L. Osborn Aug 2017

Ion Channel Signaling Influences Cellular Proliferation And Phagocyte Activity During Axolotl Tail Regeneration, Brandon M. Franklin, S. Randal Voss, Jeffrey L. Osborn

Biology Faculty Publications

Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, KV2.1, KV2.2, L-type CaV channels and H/K ATPases) or completely (GlyR, GABAAR, KV1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in …


A Linkage Map For The Newt Notophthalmus Viridescens: Insights In Vertebrate Genome And Chromosome Evolution, Melissa C. Keinath, S. Randal Voss, Panagiotis A. Tsonis, Jeramiah J. Smith Jun 2017

A Linkage Map For The Newt Notophthalmus Viridescens: Insights In Vertebrate Genome And Chromosome Evolution, Melissa C. Keinath, S. Randal Voss, Panagiotis A. Tsonis, Jeramiah J. Smith

Biology Faculty Publications

Genetic linkage maps are fundamental resources that enable diverse genetic and genomic approaches, including quantitative trait locus (QTL) analyses and comparative studies of genome evolution. It is straightforward to build linkage maps for species that are amenable to laboratory culture and genetic crossing designs, and that have relatively small genomes and few chromosomes. It is more difficult to generate linkage maps for species that do not meet these criteria. Here, we introduce a method to rapidly build linkage maps for salamanders, which are known for their enormous genome sizes. As proof of principle, we developed a linkage map with thousands …


Zinc Transporters Ybtx And Znuabc Are Required For The Virulence Of Yersinia Pestis In Bubonic And Pneumonic Plague In Mice, Alexander G. Bobrov, Olga Kirillina, Marina Y. Fosso, Jacqueline D. Fetherston, M. Clarke Miller, Tiva T. Vancleave, Joseph A. Burlison, William K. Arnold, Matthew B. Lawrenz, Sylvie Garneau-Tsodikova, Robert D. Perry Jun 2017

Zinc Transporters Ybtx And Znuabc Are Required For The Virulence Of Yersinia Pestis In Bubonic And Pneumonic Plague In Mice, Alexander G. Bobrov, Olga Kirillina, Marina Y. Fosso, Jacqueline D. Fetherston, M. Clarke Miller, Tiva T. Vancleave, Joseph A. Burlison, William K. Arnold, Matthew B. Lawrenz, Sylvie Garneau-Tsodikova, Robert D. Perry

Microbiology, Immunology, and Molecular Genetics Faculty Publications

A number of bacterial pathogens require the ZnuABC Zinc (Zn2+) transporter and/or a second Zn2+ transport system to overcome Zn2+ sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn2+ transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn2+ transport system. Here we demonstrate that a ybtX znu double mutant is essentially avirulent in mouse models of bubonic and pneumonic …


A Comparison Of Nucleosome Organization In Drosophila Cell Lines, Rebecca L. Martin, John Maiorano, Greg J. Beitel, John F. Marko, Graham Mcvicker, Yvonne N. Fondufe-Mittendorf Jun 2017

A Comparison Of Nucleosome Organization In Drosophila Cell Lines, Rebecca L. Martin, John Maiorano, Greg J. Beitel, John F. Marko, Graham Mcvicker, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Changes in the distribution of nucleosomes along the genome influence chromatin structure and impact gene expression by modulating the accessibility of DNA to transcriptional machinery. However, the role of genome-wide nucleosome positioning in gene expression and in maintaining differentiated cell states remains poorly understood. Drosophila melanogastercell lines represent distinct tissue types and exhibit cell-type specific gene expression profiles. They thus could provide a useful tool for investigating cell-type specific nucleosome organization of an organism’s genome. To evaluate this possibility, we compared genome-wide nucleosome positioning and occupancy in five different Drosophila tissue-specific cell lines, and in reconstituted chromatin, and then …


Variation In Dna Methylation Is Not Consistently Reflected By Sociality In Hymenoptera, Karl M. Glastad, Samuel V. Arsenault, Kim L. Vertacnik, Scott M. Geib, Sasha Kay, Bryan N. Danforth, Sandra M. Rehan, Catherine R. Linnen, Sarah D. Kocher, Brendan G. Hunt Jun 2017

Variation In Dna Methylation Is Not Consistently Reflected By Sociality In Hymenoptera, Karl M. Glastad, Samuel V. Arsenault, Kim L. Vertacnik, Scott M. Geib, Sasha Kay, Bryan N. Danforth, Sandra M. Rehan, Catherine R. Linnen, Sarah D. Kocher, Brendan G. Hunt

Biology Faculty Publications

Changes in gene regulation that underlie phenotypic evolution can be encoded directly in the DNA sequence or mediated by chromatin modifications such as DNA methylation. It has been hypothesized that the evolution of eusocial division of labor is associated with enhanced gene regulatory potential, which may include expansions in DNA methylation in the genomes of Hymenoptera (bees, ants, wasps, and sawflies). Recently, this hypothesis garnered support from analyses of a commonly used metric to estimate DNA methylation in silico, CpG content. Here, we test this hypothesis using direct, nucleotide-level measures of DNA methylation across nine species of Hymenoptera. In doing …


C/D-Box Snornas Form Methylating And Non-Methylating Ribonucleoprotein Complexes: Old Dogs Show New Tricks, Marina Falaleeva, Justin R. Welden, Marilyn J. Duncan, Stefan Stamm Jun 2017

C/D-Box Snornas Form Methylating And Non-Methylating Ribonucleoprotein Complexes: Old Dogs Show New Tricks, Marina Falaleeva, Justin R. Welden, Marilyn J. Duncan, Stefan Stamm

Molecular and Cellular Biochemistry Faculty Publications

C/D box snoRNAs (SNORDs) are an abundantly expressed class of short, non‐coding RNAs that have been long known to perform 2′‐O‐methylation of rRNAs. However, approximately half of human SNORDs have no predictable rRNA targets, and numerous SNORDs have been associated with diseases that show no defects in rRNAs, among them Prader‐Willi syndrome, Duplication 15q syndrome and cancer. This apparent discrepancy has been addressed by recent studies showing that SNORDs can act to regulate pre‐mRNA alternative splicing, mRNA abundance, activate enzymes, and be processed into shorter ncRNAs resembling miRNAs and piRNAs. Furthermore, recent biochemical studies have shown that a given SNORD …


Single-Trait And Multi-Trait Genome-Wide Association Analyses Identify Novel Loci For Blood Pressure In African-Ancestry Populations, Jingjing Liang, Thu H. Le, Digna R. Velez Edwards, Bamidele O. Tayo, Kyle J. Gaulton, Jennifer A. Smith, Yingchang Lu, Richard A. Jensen, Guanjie Chen, Lisa R. Yanek, Karen Schwander, Salman M. Tajuddin, Tamar Sofer, Wonji Kim, James Kayima, Colin A. Mckenzie, Ervin Fox, Michael A. Nalls, J. Hunter Young, Yan V. Sun, Jacqueline M. Lane, Sylvia Cechova, Jie Zhou, Hua Tang, Myriam Fornage, Solomon K. Musani, Heming Wang, Juyoung Lee, Adebowale Adeyemo, Albert W. Dreisbach, Donna K. Arnett May 2017

Single-Trait And Multi-Trait Genome-Wide Association Analyses Identify Novel Loci For Blood Pressure In African-Ancestry Populations, Jingjing Liang, Thu H. Le, Digna R. Velez Edwards, Bamidele O. Tayo, Kyle J. Gaulton, Jennifer A. Smith, Yingchang Lu, Richard A. Jensen, Guanjie Chen, Lisa R. Yanek, Karen Schwander, Salman M. Tajuddin, Tamar Sofer, Wonji Kim, James Kayima, Colin A. Mckenzie, Ervin Fox, Michael A. Nalls, J. Hunter Young, Yan V. Sun, Jacqueline M. Lane, Sylvia Cechova, Jie Zhou, Hua Tang, Myriam Fornage, Solomon K. Musani, Heming Wang, Juyoung Lee, Adebowale Adeyemo, Albert W. Dreisbach, Donna K. Arnett

Epidemiology and Environmental Health Faculty Publications

Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance (P < 1.25×10−8) for either systolic and …


Genome-Wide Analysis Of Atp-Binding Cassette (Abc) Transporters In The Sweetpotato Whitefly, Bemisia Tabaci, Lixia Tian, Tianxue Song, Rongjun He, Yang Zeng, Wen Xie, Qingjun Wu, Shaoli Wang, Xuguo Zhou, Youjun Zhang Apr 2017

Genome-Wide Analysis Of Atp-Binding Cassette (Abc) Transporters In The Sweetpotato Whitefly, Bemisia Tabaci, Lixia Tian, Tianxue Song, Rongjun He, Yang Zeng, Wen Xie, Qingjun Wu, Shaoli Wang, Xuguo Zhou, Youjun Zhang

Entomology Faculty Publications

Background: ABC transporter superfamily is one of the largest and ubiquitous groups of proteins. Because of their role in detoxification, insect ABC transporters have gained more attention in recent years. In this study, we annotated ABC transporters from a newly sequenced sweetpotato whitefly genome. Bemisia tabaci Q biotype is an emerging global invasive species that has caused extensive damages to field crops as well as ornamental plants.

Results: A total of 55 ABC transporters containing all eight described subfamilies (A to H) were identified in the B. tabaci Q genome, including 8 ABCAs, 3 ABCBs, 6 ABCCs, 2 ABCDs, 1 …


Genome Sequencing Of The Sweetpotato Whitefly Bemisia Tabaci Med/Q, Wen Xie, Chunhai Chen, Zezhong Yang, Litao Guo, Xin Yang, Dan Wang, Ming Chen, Jinqun Huang, Yanan Wen, Yang Zeng, Yating Liu, Jixing Xia, Lixia Tian, Hongying Cui, Qingjun Wu, Shaoli Wang, Baoyun Xu, Xianchun Li, Xinqiu Tan, Murad Ghanim, Baoli Qiu, Huipeng Pan, Dong Chu, Helene Delatte, M. N. Maruthi, Feng Ge, Xueping Zhou, Xiaowei Wang, Fanghao Wan, Yuzhou Du, Xuguo Joe Zhou Mar 2017

Genome Sequencing Of The Sweetpotato Whitefly Bemisia Tabaci Med/Q, Wen Xie, Chunhai Chen, Zezhong Yang, Litao Guo, Xin Yang, Dan Wang, Ming Chen, Jinqun Huang, Yanan Wen, Yang Zeng, Yating Liu, Jixing Xia, Lixia Tian, Hongying Cui, Qingjun Wu, Shaoli Wang, Baoyun Xu, Xianchun Li, Xinqiu Tan, Murad Ghanim, Baoli Qiu, Huipeng Pan, Dong Chu, Helene Delatte, M. N. Maruthi, Feng Ge, Xueping Zhou, Xiaowei Wang, Fanghao Wan, Yuzhou Du, Xuguo Joe Zhou

Entomology Faculty Publications

The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 437 kb, and a total length of 658 Mb. …


Micrornas, Heart Failure, And Aging: Potential Interactions With Skeletal Muscle, Kevin A. Murach, John J. Mccarthy Mar 2017

Micrornas, Heart Failure, And Aging: Potential Interactions With Skeletal Muscle, Kevin A. Murach, John J. Mccarthy

Center for Muscle Biology Faculty Publications

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by targeting mRNAs for degradation or translational repression. MiRNAs can be expressed tissue specifically and are altered in response to various physiological conditions. It has recently been shown that miRNAs are released into the circulation, potentially for the purpose of communicating with distant tissues. This manuscript discusses miRNA alterations in cardiac muscle and the circulation during heart failure, a prevalent and costly public health issue. A potential mechanism for how skeletal muscle maladaptations during heart failure could be mediated by myocardium-derived miRNAs released to the circulation is presented. An overview …


Pneumocystis Infection Alters The Activation State Of Pulmonary Macrophages, Jessica M. Deckman, Cathryn J. Kurkjian, Joseph P. Mcgillis, Theodore J. Cory, Susan E. Birket, Linda M. Schutzman, Brian S. Murphy, Beth A. Garvy, David J. Feola Feb 2017

Pneumocystis Infection Alters The Activation State Of Pulmonary Macrophages, Jessica M. Deckman, Cathryn J. Kurkjian, Joseph P. Mcgillis, Theodore J. Cory, Susan E. Birket, Linda M. Schutzman, Brian S. Murphy, Beth A. Garvy, David J. Feola

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Recent studies show a substantial incidence of Pneumocystis jirovecii colonization and infection in patients with chronic inflammatory lung conditions. However, little is known about the impact of Pneumocystis upon the regulation of pulmonary immunity. We demonstrate here that Pneumocystis polarizes macrophages towards an alternatively activated macrophage-like phenotype. Genetically engineered mice that lack the ability to signal through IL-4 and IL-13 were used to show that Pneumocystis alternative macrophage activation is dependent upon signaling through these cytokines. To determine whether Pneumocystis-induced macrophage polarization would impact subsequent immune responses, we infected mice with Pneumocystis and then challenged them with Pseudomonas aeruginosa 14 …


Radiation Induced Apoptosis Of Murine Bone Marrow Cells Is Independent Of Early Growth Response 1 (Egr1), Karine Z. Oben, Beth W. Gachuki, Sara S. Alhakeem, Mary Kathryn Mckenna, Ying Liang, Daret K. St. Clair, Vivek M. Rangnekar, Subbarao Bondada Jan 2017

Radiation Induced Apoptosis Of Murine Bone Marrow Cells Is Independent Of Early Growth Response 1 (Egr1), Karine Z. Oben, Beth W. Gachuki, Sara S. Alhakeem, Mary Kathryn Mckenna, Ying Liang, Daret K. St. Clair, Vivek M. Rangnekar, Subbarao Bondada

Microbiology, Immunology, and Molecular Genetics Faculty Publications

An understanding of how each individual 5q chromosome critical deleted region (CDR) gene contributes to malignant transformation would foster the development of much needed targeted therapies for the treatment of therapy related myeloid neoplasms (t-MNs). Early Growth Response 1 (EGR1) is a key transcriptional regulator of myeloid differentiation located within the 5q chromosome CDR that has been shown to regulate HSC (hematopoietic stem cell) quiescence as well as the master regulator of apoptosis—p53. Since resistance to apoptosis is a hallmark of malignant transformation, we investigated the role of EGR1 in apoptosis of bone marrow cells; a cell population from which …


Organelle_Pba, A Pipeline For Assembling Chloroplast And Mitochondrial Genomes From Pacbio Dna Sequencing Data, Aboozar Soorni, David Haak, David Zaitlin, Aureliano Bombarely Jan 2017

Organelle_Pba, A Pipeline For Assembling Chloroplast And Mitochondrial Genomes From Pacbio Dna Sequencing Data, Aboozar Soorni, David Haak, David Zaitlin, Aureliano Bombarely

Kentucky Tobacco Research and Development Center Faculty Publications

Background: The development of long-read sequencing technologies, such as single-molecule real-time (SMRT) sequencing by PacBio, has produced a revolution in the sequencing of small genomes. Sequencing organelle genomes using PacBio long-read data is a cost effective, straightforward approach. Nevertheless, the availability of simple-to-use software to perform the assembly from raw reads is limited at present.

Results: We present Organelle-PBA, a Perl program designed specifically for the assembly of chloroplast and mitochondrial genomes. For chloroplast genomes, the program selects the chloroplast reads from a whole genome sequencing pool, maps the reads to a reference sequence from a closely related species, and …


The Family Rhabdoviridae: Mono- And Bipartite Negative-Sense Rna Viruses With Diverse Genome Organization And Common Evolutionary Origins, Ralf G. Dietzgen, Hideki Kondo, Michael M. Goodin, Gael Kurath, Nikos Vasilakis Jan 2017

The Family Rhabdoviridae: Mono- And Bipartite Negative-Sense Rna Viruses With Diverse Genome Organization And Common Evolutionary Origins, Ralf G. Dietzgen, Hideki Kondo, Michael M. Goodin, Gael Kurath, Nikos Vasilakis

Plant Pathology Faculty Publications

The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the characteristics and diversity of rhabdoviruses, their taxonomic classification, replication mechanism, properties of classical rhabdoviruses such as rabies virus and rhabdoviruses with complex genomes, rhabdoviruses infecting aquatic species, and plant rhabdoviruses with both mono- …