Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Genetics and Genomics

Pot1 Proteins In Green Algae And Land Plants: Dna-Binding Properties And Evidence Of Co-Evolution With Telomeric Dna, Eugene V. Shakirov, Xiangyu Song, Jessica A. Joseph, Dorothy E. Shippen Dec 2009

Pot1 Proteins In Green Algae And Land Plants: Dna-Binding Properties And Evidence Of Co-Evolution With Telomeric Dna, Eugene V. Shakirov, Xiangyu Song, Jessica A. Joseph, Dorothy E. Shippen

Biological Sciences Faculty Research

Telomeric DNA terminates with a single-stranded 3′ G-overhang that in vertebrates and fission yeast is bound by POT1 (Protection Of Telomeres). However, no in vitro telomeric DNA binding is associated with Arabidopsis POT1 paralogs. To further investigate POT1–DNA interaction in plants, we cloned POT1 genes from 11 plant species representing major branches of plant kingdom. Telomeric DNA binding was associated with POT1 proteins from the green alga Ostreococcus lucimarinus and two flowering plants, maize and Asparagus. Site-directed mutagenesis revealed that several residues critical for telomeric DNA recognition in vertebrates are functionally conserved in plant POT1 proteins. However, the plant proteins …


Pot1‐Independent Single‐Strand Telomeric Dna Binding Activities In Brassicaceae, Eugene V. Shakirov, Thomas D. Mcknight, Dorothy E. Shippen Jun 2009

Pot1‐Independent Single‐Strand Telomeric Dna Binding Activities In Brassicaceae, Eugene V. Shakirov, Thomas D. Mcknight, Dorothy E. Shippen

Biological Sciences Faculty Research

Telomeres define the ends of linear eukaryotic chromosomes and are required for genome maintenance and continued cell proliferation. The extreme ends of telomeres terminate in a single‐strand protrusion, termed the G‐overhang, which, in vertebrates and fission yeast, is bound by evolutionarily conserved members of the POT1 (protection of telomeres) protein family. Unlike most other model organisms, the flowering plant Arabidopsis thaliana encodes two divergent POT1‐like proteins. Here we show that the single‐strand telomeric DNA binding activity present in A. thaliana nuclear extracts is not dependent on POT1a or POT1b proteins. Furthermore, in contrast to POT1 proteins from yeast and vertebrates, …


High Resolution Single Molecule Optical Localization Of Multiple Fluorophores On Dna Origami Constructs Fluorophores On Dna Origami Constructs, Anuradha Rajulapati Jan 2009

High Resolution Single Molecule Optical Localization Of Multiple Fluorophores On Dna Origami Constructs Fluorophores On Dna Origami Constructs, Anuradha Rajulapati

Theses, Dissertations and Capstones

An ongoing challenge in the development of nanoelectronics and nanophotonics is the nondestructive, high-resolution localization in space of single molecules and multi-molecular assemblies. The apparent barrier to the use of optical microscopy at the sub-100 nm scale is the well known Abbe Limit, the diffraction limit to resolution. This laboratory has adapted a technique called Single-molecule high resolution imaging with photobleaching (SHRIMP). We have developed methods for utilizing SHRIMP for the determination of the separation of two fluorophores in single DNA origami constructs.

DNA Origami is extremely useful because it can address nanocomponents down to 2nm separation. It should be …