Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Himmelfarb Health Sciences Library, The George Washington University

Series

Sequence Analysis, DNA

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Genetics and Genomics

Pathoscope: Species Identification And Strain Attribution With Unassembled Sequencing Data., Owen E Francis, Matthew Bendall, Solaiappan Manimaran, Changjin Hong, Nathan L Clement, Eduardo Castro-Nallar, Quinn Snell, G Bruce Schaalje, Mark J Clement, Keith A Crandall, W Evan Johnson Oct 2013

Pathoscope: Species Identification And Strain Attribution With Unassembled Sequencing Data., Owen E Francis, Matthew Bendall, Solaiappan Manimaran, Changjin Hong, Nathan L Clement, Eduardo Castro-Nallar, Quinn Snell, G Bruce Schaalje, Mark J Clement, Keith A Crandall, W Evan Johnson

Computational Biology Institute

Emerging next-generation sequencing technologies have revolutionized the collection of genomic data for applications in bioforensics, biosurveillance, and for use in clinical settings. However, to make the most of these new data, new methodology needs to be developed that can accommodate large volumes of genetic data in a computationally efficient manner. We present a statistical framework to analyze raw next-generation sequence reads from purified or mixed environmental or targeted infected tissue samples for rapid species identification and strain attribution against a robust database of known biological agents. Our method, Pathoscope, capitalizes on a Bayesian statistical framework that accommodates information on sequence …


A Genomic Island In Salmonella Enterica Ssp. Salamae Provides New Insights On The Genealogy Of The Locus Of Enterocyte Effacement., P Scott Chandry, Simon Gladman, Sean C Moore, Torsten Seemann, Keith A Crandall, Narelle Fegan Jan 2012

A Genomic Island In Salmonella Enterica Ssp. Salamae Provides New Insights On The Genealogy Of The Locus Of Enterocyte Effacement., P Scott Chandry, Simon Gladman, Sean C Moore, Torsten Seemann, Keith A Crandall, Narelle Fegan

Computational Biology Institute

The genomic island encoding the locus of enterocyte effacement (LEE) is an important virulence factor of the human pathogenic Escherichia coli. LEE typically encodes a type III secretion system (T3SS) and secreted effectors capable of forming attaching and effacing lesions. Although prominent in the pathogenic E. coli such as serotype O157:H7, LEE has also been detected in Citrobacter rodentium, E. albertii, and although not confirmed, it is likely to also be in Shigella boydii. Previous phylogenetic analysis of LEE indicated the genomic island was evolving through stepwise acquisition of various components. This study describes a new LEE region from two …