Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Caenorhabditis elegans

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 33

Full-Text Articles in Genetics and Genomics

Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang Jan 2024

Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Mutations in fused in sarcoma (fust-1) are linked to ALS. However, how these ALS causative mutations alter physiological processes and lead to the onset of ALS remains largely unknown. By obtaining humanized fust-1 ALS mutations via CRISPR-CAS9, we generated a C. elegans ALS model. Homozygous fust-1 ALS mutant and fust-1 deletion animals are viable in C. elegans. This allows us to better characterize the molecular mechanisms of fust-1-dependent responses. We found FUST-1 plays a role in regulating superoxide dismutase, glutamate signaling, and oxidative stress. FUST-1 suppresses SOD-1 and VGLUT/EAT-4 in the nervous system. FUST-1 also regulates synaptic AMPA-type glutamate receptor …


Utilizing Crispr Cas9 To Visualize Dopamine Receptors In Caenorhabditis Elegans, Lauren Michelle Velasquez Aug 2023

Utilizing Crispr Cas9 To Visualize Dopamine Receptors In Caenorhabditis Elegans, Lauren Michelle Velasquez

Electronic Theses, Projects, and Dissertations

Dopamine (DA) is a neurotransmitter with imperative implications in many functions including movement, reward, and cognition. Studying the pathways of dopaminergic neurons at multiple levels allows us to understand the ways in which these systems can go wrong. We study dopamine in a model system such as the worm Caenorhabditis elegans because of its relatively simple and well-characterized nervous system. DA is involved in regulating chemosensory behaviors in worms. The purpose of this research project is to definitively answer the following question: Are the dopamine receptors DOP-1 and DOP-4 expressed in chemosensory neurons? Previous reporter assays show that neither of …


Quantitative And Qualitative Analysis Of Mutation In Pam-1 Of Model Organism Caenorhabditis Elegans., Jessica Stein, Jessica Stein May 2023

Quantitative And Qualitative Analysis Of Mutation In Pam-1 Of Model Organism Caenorhabditis Elegans., Jessica Stein, Jessica Stein

Honors College Theses

The pam-1 gene in the model roundworm Caenorhabditis elegans governs meiotic exit and establishment of cellular polarity in the single-celled C. elegans embryo. Mutation of the pam-1 gene results in reduced fertility and fecundity in adult C. elegans and disrupts the anatomy of the germinal gonad. The aim of this study is to qualitatively and quantitatively define the changes in the germline cells associated with mutations to the pam-1 gene. Specifically, we examined the stages of germ cell development within the gonads of adult worms, both wild-type and pam-1 compromised, and identified the changes in the length of the mitotic, …


Orthologs Of The C. Elegans Heterochronic Genes Have Divergent Functions In C. Briggsae, Maria Ivanova, Eric G. Moss May 2023

Orthologs Of The C. Elegans Heterochronic Genes Have Divergent Functions In C. Briggsae, Maria Ivanova, Eric G. Moss

Rowan-Virtua Research Day

The heterochronic genes of C. elegans comprise the best-studied pathway controlling the timing of tissue and organ formation in an animal. To begin to understand the evolution of this pathway, the significance of each factor, and the relationships among the components, we characterized 11 C. briggsae orthologs of C. elegans heterochronic genes. Using CRISPR/Cas9, we made a variety of alleles and found that several mutant phenotypes differ in significant ways from those of C. elegans. Although most orthologs displayed defects in developmental timing, those phenotypes could differ in which stages they controlled, the penetrance and expressivity of the phenotypes, or …


Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo Aug 2022

Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo

Graduate School of Biomedical Sciences Theses and Dissertations

In Caenorhabditis elegans, the heterochronic pathway is comprised of a hierarchy of genes that control the proper timing of developmental events. hbl-1 (Hunchback Like-1) encodes an Ikaros family zinc-finger transcription factor that promotes the L2 stage cell fate events of the hypodermis. The downregulation ofhbl-1 is a crucial step for the transition from the L2 to the L3 stage. There are two known processes through which negative regulation of hbl-1 occurs: suppression of hbl-1 expression by 3 let-7 miRNAs through the hbl-1 3’UTR and inhibition of HBL-1 activity by LIN-46. The mechanisms by which hbl-1 is positively regulated have not …


Mitonuclear Mismatch Is Associated With Increased Male Frequency, Outcrossing, And Male Sperm Size In Experimentally-Evolved C. Elegans, Brent William Bever Sep 2021

Mitonuclear Mismatch Is Associated With Increased Male Frequency, Outcrossing, And Male Sperm Size In Experimentally-Evolved C. Elegans, Brent William Bever

Dissertations and Theses

We provide the first controlled study of how male frequencies and rates of outcrossing evolve in response to mitonuclear mismatch by allowing replicate lineages of C. elegans nematodes containing either mitochondrial or nuclear mutations of electron transport chain (ETC) genes to evolve under three sexual systems: facultatively outcrossing (wildtype), obligately selfing, and obligately outcrossing. In partial support of a tenet of the mitonuclear sex hypothesis, which predicts that outcrossing will be favored in cases of mitonuclear mismatch, we found evolution of increased male frequency in at least one replicate line of all four ETC mutant backgrounds tested--nuclear isp-1, mitochondrial …


Genetic And Functional Characterization Of Novel Host Factors Regulating Virus Infection In Caenorhabditis Elegans, Luis Enrique Sandoval Aug 2020

Genetic And Functional Characterization Of Novel Host Factors Regulating Virus Infection In Caenorhabditis Elegans, Luis Enrique Sandoval

Arts & Sciences Electronic Theses and Dissertations

Viruses infect the majority of eukaryotic life on the planet and remain a global threat to human health. These pathogens are constrained to intracellular life cycles, as they exploit and rely on host factors and machinery throughout their entire reproduction process. While many of these viral life cycle factors have been reported and studied, our knowledge in the identity and function of these factors remains incomplete and a challenge in fundamental virology and the development of antiviral therapeutics. Caenorhabditis elegans offers an innovative approach for discovering novel host factors required for virus infection in a multicellular and simple model organism. …


Investigation Of Glutamate Carboxypeptidase Ii Roles In The Folate Cycle Dependent Reproduction And Development Of Caenorhabditis Elegans, Jessica M. Derham Jan 2020

Investigation Of Glutamate Carboxypeptidase Ii Roles In The Folate Cycle Dependent Reproduction And Development Of Caenorhabditis Elegans, Jessica M. Derham

Masters Theses

Glutamate Carboxypeptidase II (GCPII) is a transmembrane, zinc metallopeptidase that is expressed in a wide range of organisms, including roundworms, mice, and humans. In humans, GCPII is primarily expressed in the prostate, kidneys, small intestine, and central nervous system. Within the small intestine, the expected function of GCPII is to aid in the absorption of dietary folate from the intestinal lumen. GCPII cleaves excess glutamates from folate to yield monoglutamated folate which is then readily transported into the enterocyte. Folate can then be used through the one carbon metabolic cycle for the synthesis of nucleotides, conversion of homocysteine to methionine, …


The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld Jun 2018

The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating …


Caenorhabditis Elegans Dbl-1/Bmp Regulates Lipid Accumulation Via Interaction With Insulin Signaling, James F. Clark, Michael Meade, Gehan Ranepura, David H. Hall, Cathy Savage-Dunn Nov 2017

Caenorhabditis Elegans Dbl-1/Bmp Regulates Lipid Accumulation Via Interaction With Insulin Signaling, James F. Clark, Michael Meade, Gehan Ranepura, David H. Hall, Cathy Savage-Dunn

Publications and Research

Metabolic homeostasis is coordinately controlled by diverse inputs. Understanding these regulatory networks is vital to combating metabolic disorders. The nematode Caenorhabditis elegans has emerged as a powerful, genetically tractable model system for the discovery of lipid regulatory mechanisms. Here we introduce DBL-1, the C. elegans homolog of bone morphogenetic protein 2/4 (BMP2/4), as a significant regulator of lipid homeostasis. We used neutral lipid staining and a lipid droplet marker to demonstrate that both increases and decreases in DBL-1/BMP signaling result in reduced lipid stores and lipid droplet count. We find that lipid droplet size, however, correlates positively with the level …


Systems Biology Approach To Late-Onset Alzheimer's Disease Genome-Wide Association Study Identifies Novel Candidate Genes Validated Using Brain Expression Data And Caenorhabditis Elegans Experiments, Shubhabrata Mukherjee, Joshua C. Russell, Daniel T. Carr, Jeremy D. Burgess, Mariet Allen, Daniel J. Serie, Kevin L. Boehme, John S. K. Kauwe, Adam C. Naj, David W. Fardo, Dennis W. Dickson, Thomas J. Montine, Nilufer Ertekin-Taner, Matt R. Kaeberlein, Paul K. Crane Oct 2017

Systems Biology Approach To Late-Onset Alzheimer's Disease Genome-Wide Association Study Identifies Novel Candidate Genes Validated Using Brain Expression Data And Caenorhabditis Elegans Experiments, Shubhabrata Mukherjee, Joshua C. Russell, Daniel T. Carr, Jeremy D. Burgess, Mariet Allen, Daniel J. Serie, Kevin L. Boehme, John S. K. Kauwe, Adam C. Naj, David W. Fardo, Dennis W. Dickson, Thomas J. Montine, Nilufer Ertekin-Taner, Matt R. Kaeberlein, Paul K. Crane

Biostatistics Faculty Publications

Introduction—We sought to determine whether a systems biology approach may identify novel late-onset Alzheimer's disease (LOAD) loci.

Methods—We performed gene-wide association analyses and integrated results with human protein-protein interaction data using network analyses. We performed functional validation on novel genes using a transgenic Caenorhabditis elegans Aβ proteotoxicity model and evaluated novel genes using brain expression data from people with LOAD and other neurodegenerative conditions.

Results—We identified 13 novel candidate LOAD genes outside chromosome 19. Of those, RNA interference knockdowns of the C. elegans orthologs of UBC, NDUFS3, EGR1, and ATP5H were associated with Aβ …


The Fate Of Icd-1 During Misfolded Protein Induced Apoptosis In Caenorhabditis Elegans, Kyle H. Perez Dec 2016

The Fate Of Icd-1 During Misfolded Protein Induced Apoptosis In Caenorhabditis Elegans, Kyle H. Perez

Senior Honors Projects, 2010-2019

Severe misfolded protein stress initiates cellular responses that often result in the death of the affected cell, typically by apoptosis. An essential aspect of apoptosis is caspase-mediated cleavage of proteins that, once cleaved, further propagate death. One heterodimeric structure putatively targeted in this process in the nascent polypeptide-associated complex (NAC), a translational chaperone thought to help prevent misfolded protein stress in the ER. The purpose of this investigation was to determine whether the beta subunit of the NAC in C. elegans (ICD-1) is cleaved during the induction of apoptosis, with the hypothesis that ICD-1 is cleaved during stressed-induced apoptosis to …


Caenorhabditis Elegans Alg-1 Antimorphic Mutations Uncover Functions For Argonaute In Microrna Guide Strand Selection And Passenger Strand Disposal, Anna Y. Zinovyeva, Isana Veksler-Lublinsky, Ajay A. Vashisht, James A. Wohlschlegel, Victor R. Ambros Oct 2015

Caenorhabditis Elegans Alg-1 Antimorphic Mutations Uncover Functions For Argonaute In Microrna Guide Strand Selection And Passenger Strand Disposal, Anna Y. Zinovyeva, Isana Veksler-Lublinsky, Ajay A. Vashisht, James A. Wohlschlegel, Victor R. Ambros

Victor R. Ambros

MicroRNAs are regulators of gene expression whose functions are critical for normal development and physiology. We have previously characterized mutations in a Caenorhabditis elegans microRNA-specific Argonaute ALG-1 (Argonaute-like gene) that are antimorphic [alg-1(anti)]. alg-1(anti) mutants have dramatically stronger microRNA-related phenotypes than animals with a complete loss of ALG-1. ALG-1(anti) miRISC (microRNA induced silencing complex) fails to undergo a functional transition from microRNA processing to target repression. To better understand this transition, we characterized the small RNA and protein populations associated with ALG-1(anti) complexes in vivo. We extensively characterized proteins associated with wild-type and mutant ALG-1 and found that the mutant …


Robust Distal Tip Cell Pathfinding In The Face Of Temperature Stress Is Ensured By Two Conserved Micrornas In Caenorhabditis Elegans, Samantha L. Burke, Molly Hammell, Victor R. Ambros Oct 2015

Robust Distal Tip Cell Pathfinding In The Face Of Temperature Stress Is Ensured By Two Conserved Micrornas In Caenorhabditis Elegans, Samantha L. Burke, Molly Hammell, Victor R. Ambros

Victor R. Ambros

Biological robustness, the ability of an organism to maintain a steady-state output as genetic or environmental inputs change, is critical for proper development. MicroRNAs have been implicated in biological robustness mechanisms through their post-transcriptional regulation of genes and gene networks. Previous research has illustrated examples of microRNAs promoting robustness as part of feedback loops and genetic switches and by buffering noisy gene expression resulting from environmental and/or internal changes. Here we show that the evolutionarily conserved microRNAs mir-34 and mir-83 (homolog of mammalian mir-29) contribute to the robust migration pattern of the distal tip cells in Caenorhabditis elegans by specifically …


Inhibiting Mirna In Caenorhabditis Elegans Using A Potent And Selective Antisense Reagent, Genhua Zheng, Victor R. Ambros, Wen-Hong Li Oct 2015

Inhibiting Mirna In Caenorhabditis Elegans Using A Potent And Selective Antisense Reagent, Genhua Zheng, Victor R. Ambros, Wen-Hong Li

Victor R. Ambros

BACKGROUND: Antisense reagents can serve as efficient and versatile tools for studying gene function by inhibiting nucleic acids in vivo. Antisense reagents have particular utility for the experimental manipulation of the activity of microRNAs (miRNAs), which are involved in the regulation of diverse developmental and physiological pathways in animals. Even in traditional genetic systems, such as the nematode Caenorhabditis elegans, antisense reagents can provide experimental strategies complementary to mutational approaches. Presently no antisense reagents are available for inhibiting miRNAs in the nematode C. elegans. RESULTS: We have developed a new class of fluorescently labelled antisense reagents to inhibit miRNAs in …


Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros Oct 2015

Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros

Victor R. Ambros

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, …


Caenorhabditis Elegans Micrornas Of The Let-7 Family Act In Innate Immune Response Circuits And Confer Robust Developmental Timing Against Pathogen Stress, Zhiji Ren, Victor R. Ambros Oct 2015

Caenorhabditis Elegans Micrornas Of The Let-7 Family Act In Innate Immune Response Circuits And Confer Robust Developmental Timing Against Pathogen Stress, Zhiji Ren, Victor R. Ambros

Victor R. Ambros

Animals maintain their developmental robustness against natural stresses through numerous regulatory mechanisms, including the posttranscriptional regulation of gene expression by microRNAs (miRNAs). Caenorhabditis elegans miRNAs of the let-7 family (let-7-Fam) function semiredundantly to confer robust stage specificity of cell fates in the hypodermal seam cell lineages. Here, we show reciprocal regulatory interactions between let-7-Fam miRNAs and the innate immune response pathway in C. elegans. Upon infection of C. elegans larvae with the opportunistic human pathogen Pseudomonas aeruginosa, the developmental timing defects of certain let-7-Fam miRNA mutants are enhanced. This enhancement is mediated by the p38 MAPK innate immune pathway acting …


Effect Of Life History On Microrna Expression During C. Elegans Development, Xantha Karp, Molly Hammell, Maria C. Ow, Victor R. Ambros Oct 2015

Effect Of Life History On Microrna Expression During C. Elegans Development, Xantha Karp, Molly Hammell, Maria C. Ow, Victor R. Ambros

Victor R. Ambros

Animals have evolved mechanisms to ensure the robustness of developmental outcomes to changing environments. MicroRNA expression may contribute to developmental robustness because microRNAs are key post-transcriptional regulators of developmental gene expression and can affect the expression of multiple target genes. Caenorhabditis elegans provides an excellent model to study developmental responses to environmental conditions. In favorable environments, C. elegans larvae develop rapidly and continuously through four larval stages. In contrast, in unfavorable conditions, larval development may be interrupted at either of two diapause stages: The L1 diapause occurs when embryos hatch in the absence of food, and the dauer diapause occurs …


Distinct Physiological Roles For The Two Isoforms Of The Er Chaperone Grp170 In Caenorhabditis Elegans, Yuanyuan Li Aug 2015

Distinct Physiological Roles For The Two Isoforms Of The Er Chaperone Grp170 In Caenorhabditis Elegans, Yuanyuan Li

Biology Theses

GRP170 is a large molecular chaperone found in the ER of all eukaryotes. The nematode Caenorhabditis elegans has two loci encoding GRP170: T24H7.2 (grp170a) and T14G8.3 (grp170b). The phenotypes of nematodes genetically deficient for either grp170a or grp170b were compared to a standard laboratory strain with functional grp170 loci. Worms that were deficient for grp170a developed 32% slower than the control strain. The loss of grp170a had a significant but modest reduction on the life span compared to the control strain. Worms deficient for grp170a also displayed significantly increased embryonic lethality and resulted in 6.9% arrested embryos. The loss of …


Differential Regulation Of The Two Grp170 Paralogues Of Caenorhabditis Elegans, Antonio L. Rockwell Aug 2015

Differential Regulation Of The Two Grp170 Paralogues Of Caenorhabditis Elegans, Antonio L. Rockwell

Biology Theses

Abstract of a Thesis

Differential Regulation of the Two grp170 Paralogues of Caenorhabditis elegans

Caenorhabditis elegans has two loci encoding the large eukaryotic molecular chaperone Grp170, grp170a (T24H7.2) and grp170b (T14G8.3). To investigate expression of the two C. elegans grp170 loci during ER stress, the Unfolded Protein Response (UPR) was induced with the glycosylation inhibitor tunicamycin. Levels of grp170a mRNA did not significantly change in response to tunicamycin treatment while the levels of grp170b mRNA increased 6-fold. ER stress induction of grp170b was unaffected in worms defective for the ATF6 and PERK-1 UPR signal transduction pathways. However, worms defective …


Orthoclust: An Orthology-Based Network Framework For Clustering Data Across Multiple Species, Koon-Kiu Yan, Daifeng Wang, Joel Rozowsky, Henry Zheng, Chao Cheng, Mark Gerstein Gerstein Aug 2014

Orthoclust: An Orthology-Based Network Framework For Clustering Data Across Multiple Species, Koon-Kiu Yan, Daifeng Wang, Joel Rozowsky, Henry Zheng, Chao Cheng, Mark Gerstein Gerstein

Dartmouth Scholarship

Increasingly, high-dimensional genomics data are becoming available for many organisms.Here, we develop OrthoClust for simultaneously clustering data across multiple species. OrthoClust is a computational framework that integrates the co-association networks of individual species by utilizing the orthology relationships of genes between species. It outputs optimized modules that are fundamentally cross-species, which can either be conserved or species-specific. We demonstrate the application of OrthoClust using the RNA-Seq expression profiles of Caenorhabditis elegans and Drosophila melanogaster from the modENCODE consortium. A potential application of cross-species modules is to infer putative analogous functions of uncharacterized elements like non-coding RNAs based on guilt-by-association.


Catp-6, A C. Elegans Ortholog Of Atp13a2 Park9, Positively Regulates Gem-1, An Slc16a Transporter, Eric J. Lambie, Pamela J. Tieu, Nadja Lebedeva, Diane L. Church, Barbara Conradt Oct 2013

Catp-6, A C. Elegans Ortholog Of Atp13a2 Park9, Positively Regulates Gem-1, An Slc16a Transporter, Eric J. Lambie, Pamela J. Tieu, Nadja Lebedeva, Diane L. Church, Barbara Conradt

Dartmouth Scholarship

In previous work, we found that gain-of-function mutations that hyperactivate GEM-1 (an SLC16A transporter protein) can bypass the requirement for GON-2 (a TRPM channel protein) during the initiation of gonadogenesis in C. elegans . Consequently, we proposed that GEM-1 might function as part of a Mg 2 + uptake pathway that functions in parallel to GON- 2. In this study, we report that CATP-6, a C. elegans ortholog of the P5B ATPase, ATP13A2 (PARK9), is necessary for gem-1 gain-of-function mutations to suppress the effects of gon-2 inactivation. One possible explanation for this observation is that GEM-1 serves to activate CATP-6, …


Investigating Potential Target Genes Of The Rfx Transcription Factor Daf-19 In Caenorhabditis Elegans, He Zhang May 2013

Investigating Potential Target Genes Of The Rfx Transcription Factor Daf-19 In Caenorhabditis Elegans, He Zhang

Lawrence University Honors Projects

Neurodegenerative diseases, such as Alzheimer’s disease, are characterized by an age-related decrease in the synaptic activity of the patient’s brain. Previous research suggested that a RFX transcription factor DAF-19 in the nematode Caenorhabditis elegans (C. elegans) may be involved in the maintenance of synaptic protein levels. Particularly, worms that were DAF-19A/B defective showed reduced synaptic activities when compared to their age-matched controls.

This study investigated the role of DAF-19A/B isoforms in the C. elegans nervous system. Three genes, F46G11.3, F57B10.9, and F58E2.3 were selected as potential downstream targets of DAF-19A/B based on their potential neuronal expression. …


A Feedback Circuit Involving Let-7-Family Mirnas And Daf-12 Integrates Environmental Signals And Developmental Timing In Caenorhabditis Elegans, Christopher M. Hammell, Xantha Karp, Victor R. Ambros Nov 2009

A Feedback Circuit Involving Let-7-Family Mirnas And Daf-12 Integrates Environmental Signals And Developmental Timing In Caenorhabditis Elegans, Christopher M. Hammell, Xantha Karp, Victor R. Ambros

Victor R. Ambros

Animal development is remarkably robust; cell fates are specified with spatial and temporal precision despite physiological and environmental contingencies. Favorable conditions cause Caenorhabditis elegans to develop rapidly through four larval stages (L1-L4) to the reproductive adult. In unfavorable conditions, L2 larvae can enter the developmentally quiescent, stress-resistant dauer larva stage, enabling them to survive for prolonged periods before completing development. A specific progression of cell division and differentiation events occurs with fidelity during the larval stages, regardless of whether an animal undergoes continuous or dauer-interrupted development. The temporal patterning of developmental events is controlled by the heterochronic genes, whose products …


The C. Elegans Snail Homolog Ces-1 Can Activate Gene Expression In Vivo And Share Targets With Bhlh Transcription Factors, John S. Reece-Hoyes, Bart Deplancke, M. Inmaculada Barrasa, Julia Hatzold, Ryan B. Smit, H Efsun Arda, Patricia A. Pope, Jeb Gaudet, Barbara Conradt, Albertga J.M. Walhout Apr 2009

The C. Elegans Snail Homolog Ces-1 Can Activate Gene Expression In Vivo And Share Targets With Bhlh Transcription Factors, John S. Reece-Hoyes, Bart Deplancke, M. Inmaculada Barrasa, Julia Hatzold, Ryan B. Smit, H Efsun Arda, Patricia A. Pope, Jeb Gaudet, Barbara Conradt, Albertga J.M. Walhout

Dartmouth Scholarship

Snail-type transcription factors (TFs) are found in numerous metazoan organisms and function in a plethora of cellular and developmental processes including mesoderm and neuronal development, apoptosis and cancer. So far, Snail-type TFs are exclusively known as transcriptional repressors. They repress gene expression by recruiting transcriptional co-repressors and/or by preventing DNA binding of activators from the basic helix-loop-helix (bHLH) family of TFs to CAGGTG E-box sequences. Here we report that the Caenorhabditis elegans Snail-type TF CES-1 can activate transcription in vivo. Moreover, we provide results that suggest that CES-1 can share its binding site with bHLH TFs, in different tissues, …


Interacting Endogenous And Exogenous Rnai Pathways In Caenorhabditis Elegans., Rosalind C. Lee, Christopher M. Hammell, Victor R. Ambros Mar 2006

Interacting Endogenous And Exogenous Rnai Pathways In Caenorhabditis Elegans., Rosalind C. Lee, Christopher M. Hammell, Victor R. Ambros

Victor R. Ambros

C. elegans contains numerous small RNAs of ~21-24 nt in length. The microRNAs (miRNAs) are small noncoding RNAs produced by DCR-1- and ALG-dependent processing of self-complementary hairpin transcripts. Endogenous small interfering RNAs (endo-siRNAs), associated with ongoing silencing of protein-coding genes in normal worms, are produced by mechanisms that involve DCR-1 but, unlike miRNAs, also involve RDE-2, RDE-3, RDE-4, RRF-1, and RRF-3. The tiny noncoding (tncRNAs) are similar to endo-siRNAs in their biogenesis except that they are derived from noncoding sequences. These endo-siRNA- and tncRNA-based endogenous RNAi pathways involve some components, including DCR-1 and RDE-4, that are shared with exogenous RNAi, …


The Caenorhabditis Elegans Heterochronic Regulator Lin-14 Is A Novel Transcription Factor That Controls The Developmental Timing Of Transcription From The Insulin/Insulin-Like Growth Factor Gene Ins-33 By Direct Dna Binding., Marta Hristova, Darcy Birse, Yang Hong, Victor R. Ambros Nov 2005

The Caenorhabditis Elegans Heterochronic Regulator Lin-14 Is A Novel Transcription Factor That Controls The Developmental Timing Of Transcription From The Insulin/Insulin-Like Growth Factor Gene Ins-33 By Direct Dna Binding., Marta Hristova, Darcy Birse, Yang Hong, Victor R. Ambros

Victor R. Ambros

A temporal gradient of the novel nuclear protein LIN-14 specifies the timing and sequence of stage-specific developmental events in Caenorhabditis elegans. The profound effects of lin-14 mutations on worm development suggest that LIN-14 directly or indirectly regulates stage-specific gene expression. We show that LIN-14 can associate with chromatin in vivo and has in vitro DNA binding activity. A bacterially expressed C-terminal domain of LIN-14 was used to select DNA sequences that contain a putative consensus binding site from a pool of randomized double-stranded oligonucleotides. To identify candidates for genes directly regulated by lin-14, we employed DNA microarray hybridization to compare …


A Gene Expression Fingerprint Of C. Elegans Embryonic Motor Neurons, Rebecca M. Fox, Stephen E. Von Stetina, Susan J. Barlow, Christian Shaffer, Kellen L. Olszewski, Jason H. Moore Mar 2005

A Gene Expression Fingerprint Of C. Elegans Embryonic Motor Neurons, Rebecca M. Fox, Stephen E. Von Stetina, Susan J. Barlow, Christian Shaffer, Kellen L. Olszewski, Jason H. Moore

Dartmouth Scholarship

Differential gene expression specifies the highly diverse cell types that constitute the nervous system. With its sequenced genome and simple, well-defined neuroanatomy, the nematode C. elegans is a useful model system in which to correlate gene expression with neuron identity. The UNC-4 transcription factor is expressed in thirteen embryonic motor neurons where it specifies axonal morphology and synaptic function. These cells can be marked with an unc-4::GFP reporter transgene. Here we describe a powerful strategy, Micro-Array Profiling of C. elegans cells (MAPCeL), and confirm that this approach provides a comprehensive gene expression profile of unc-4::GFP motor neurons in vivo.

.


The Caenorhabditis Elegans F-Box Protein Sel-10 Promotes Female Development And May Target Fem-1 And Fem-3 For Degradation By The Proteasome, Sibylle Jager, Hillel T. Schwartz, H. Robert Horvitz, Barbara Conradt Aug 2004

The Caenorhabditis Elegans F-Box Protein Sel-10 Promotes Female Development And May Target Fem-1 And Fem-3 For Degradation By The Proteasome, Sibylle Jager, Hillel T. Schwartz, H. Robert Horvitz, Barbara Conradt

Dartmouth Scholarship

The Caenorhabditis elegans F-box protein SEL-10 and its human homolog have been proposed to regulate LIN-12 Notch signaling by targeting for ubiquitin-mediated proteasomal degradation LIN-12 Notch proteins and SEL-12 PS1 presenilins, the latter of which have been implicated in Alzheimer's disease. We found that sel-10 is the same gene as egl-41, which previously had been defined by gain-of-function mutations that semidominantly cause masculinization of the hermaphrodite soma. Our results demonstrate that mutations causing loss-of-function of sel-10 also have masculinizing activity, indicating that sel-10 functions to promote female development. Genetically, sel-10 acts upstream of the genes fem-1, fem-2, and fem-3 and …


The C. Elegans Heterochronic Gene Lin-46 Affects Developmental Timing At Two Larval Stages And Encodes A Relative Of The Scaffolding Protein Gephyrin, A. S.-R. Pepper, Jill E. Mccane, Kevin Kemper, Dennis Au Yeung, Rosalind C. Lee, Victor Ambros, Eric G. Moss Apr 2004

The C. Elegans Heterochronic Gene Lin-46 Affects Developmental Timing At Two Larval Stages And Encodes A Relative Of The Scaffolding Protein Gephyrin, A. S.-R. Pepper, Jill E. Mccane, Kevin Kemper, Dennis Au Yeung, Rosalind C. Lee, Victor Ambros, Eric G. Moss

Dartmouth Scholarship

The succession of developmental events in the C. elegans larva is governed by the heterochronic genes. When mutated, these genes cause either precocious or retarded developmental phenotypes, in which stage-specific patterns of cell division and differentiation are either skipped or reiterated, respectively. We identified a new heterochronic gene, lin-46, from mutations that suppress the precocious phenotypes caused by mutations in the heterochronic genes lin-14 and lin-28. lin-46 mutants on their own display retarded phenotypes in which cell division patterns are reiterated and differentiation is prevented in certain cell lineages. Our analysis indicates that lin-46 acts at a step immediately downstream …