Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Genetics and Genomics

Characterization Of Pathological Tau Mutants, Charles J. Mcdonald Sep 2023

Characterization Of Pathological Tau Mutants, Charles J. Mcdonald

Dissertations, Theses, and Capstone Projects

Tau is a protein expressed exclusively in glia and neurons in the central nervous system and implicated in several neurogenerative diseases called “tauopathies”. Among all the tauopathies, one third is characterized by the presence of genetic mutations leading to the synthesis of tau proteins with single amino acid substitutions at specific locations and affecting protein function. While most of the initial studies have emphasize the functional role of tau as modulator of the axonal cytoskeleton, it has recently been well accepted that tau is also an intrinsically disordered protein that tends to form membraneless organelles called coacervates, due to a …


Unbiased Automated Quantitation Of Ros Signals In Live Retinal Neurons Of Drosophila Using Fiji/Imagej, Prajakta Deshpande, Neha Gogia, Anuradha Venkatakrishnan Chimata, Amit Singh Aug 2021

Unbiased Automated Quantitation Of Ros Signals In Live Retinal Neurons Of Drosophila Using Fiji/Imagej, Prajakta Deshpande, Neha Gogia, Anuradha Venkatakrishnan Chimata, Amit Singh

Biology Faculty Publications

Numerous imaging modules are utilized to study changes that occur during cellular processes. Besides qualitative (immunohistochemical) or semiquantitative (Western blot) approaches, direct quantitation method(s) for detecting and analyzing signal intensities for disease(s) biomarkers are lacking. Thus, there is a need to develop method(s) to quantitate specific signals and eliminate noise during live tissue imaging. An increase in reactive oxygen species (ROS) such as superoxide (O2•-) radicals results in oxidative damage of biomolecules, which leads to oxidative stress. This can be detected by dihydroethidium staining in live tissue(s), which does not rely on fixation and helps prevent stress on tissues. However, …


Translational Fidelity And Its Role In Neuronal Homeostasis, Markus Terrey May 2021

Translational Fidelity And Its Role In Neuronal Homeostasis, Markus Terrey

Electronic Theses and Dissertations

The process of translation, which refers to decoding genetic information from mRNA to protein, is vital for all cellular function. Translational fidelity starts at the level of aminoacylation of transfer RNAs (tRNA). This reaction is catalyzed by aminoacyl tRNA synthetases where each amino acid is transferred to its corresponding cognate tRNA. Because tRNAs harbor the anticodon sequence to decodes a particular mRNA codon, the specific aminoacylation of the tRNA with a cognate amino acid establishes the rules of decoding genetic code into proteins. Aminoacylated tRNAs are then delivered to ribosomes, where ribosomes in a highly organized manner need to accurately …


Inactivation Of Hippo And Cjun-N-Terminal Kinase (Jnk) Signaling Mitigate Fus Mediated Neurodegeneration In-Vivo, Ankita Sarkar, Abijeet Singh Mehta, Prajakta Deshpande, Madhuri Kango-Singh, Udai Bhan Pandey, Amit Singh Jul 2020

Inactivation Of Hippo And Cjun-N-Terminal Kinase (Jnk) Signaling Mitigate Fus Mediated Neurodegeneration In-Vivo, Ankita Sarkar, Abijeet Singh Mehta, Prajakta Deshpande, Madhuri Kango-Singh, Udai Bhan Pandey, Amit Singh

Biology Faculty Publications

Amyotrophic Lateral Sclerosis (ALS), a late-onset neurodegenerative disorder characterized by the loss of motor neurons in the central nervous system, has no known cure to-date. Disease causing mutations in human Fused in Sarcoma (FUS) leads to aggressive and juvenile onset of ALS. FUS is a well-conserved protein across different species, which plays a crucial role in regulating different aspects of RNA metabolism. Targeted misexpression of FUS in Drosophila model recapitulates several interesting phenotypes relevant to ALS including cytoplasmic mislocalization, defects at the neuromuscular junction and motor dysfunction. We screened for the genetic modifiers of human FUS-mediated neurodegenerative phenotype using molecularly …


Tamalin/Gras-1 Connects Glutamate Receptor Activity To The Insulin/Igf Signaling Cascade To Regulate Neuroprotection In A Nematode Model Of Excitotoxicity, Ayesha Chowdhury Feb 2020

Tamalin/Gras-1 Connects Glutamate Receptor Activity To The Insulin/Igf Signaling Cascade To Regulate Neuroprotection In A Nematode Model Of Excitotoxicity, Ayesha Chowdhury

Dissertations, Theses, and Capstone Projects

Brain ischemia is a major cause of debilitation and death in the United States. Excitotoxicity, a condition that arises from the accumulation of glutamate (Glu) in the synapse that leads to overactivation of Glu receptors (GluRs), is the major mechanism of neuronal damage in brain ischemia / stroke. Although it is commonly acknowledged that over activation of GluRs leads to neurodegeneration, it has been recently shown that even during excitotoxicity Glu has a concurrent important role in regulating neuroprotection. GluR-activated transcription factors seem to mediate this neuroprotection, but it remains unclear which signaling cascades and transcription factors are regulated by …


Neurodegenerative Modeling: Tau Protein, Degradative Pathways, And Gene Expression Profiling Of Human Ipsc-Derived Neural Precursors And Differentiated 3-D Neural Sphere Versus 2-D Monolayer Cultures, Kyle H. Anthoney Jan 2020

Neurodegenerative Modeling: Tau Protein, Degradative Pathways, And Gene Expression Profiling Of Human Ipsc-Derived Neural Precursors And Differentiated 3-D Neural Sphere Versus 2-D Monolayer Cultures, Kyle H. Anthoney

Cal Poly Humboldt theses and projects

Human induced pluripotent stem cells offer a model for human brain development and disease by differentiation into brain organoids; however, current neural culture systems lack the microenvironment, neuronal circuits and connectivity, vascular circulation, and immune system that exist in vivo. After differentiation and development of neuronal and non-neuronal cell types within two formats of cell cultures, we can visualize and recapitulate in vivo protein accumulation, gene expression, and degradative processes such as autophagy. Using RNA extraction, purification methods and reverse transcription I compared traditional monolayer cultures and novel 3-D neural sphere cultures via gene expression analysis. This analysis indicated …


Investigating Autophagy Dysfunction Induced By A Parkinson's Disease-Causing Mutation In Vps35, Abir Ashfakur Rahman Dec 2018

Investigating Autophagy Dysfunction Induced By A Parkinson's Disease-Causing Mutation In Vps35, Abir Ashfakur Rahman

Boise State University Theses and Dissertations

Parkinson’s Disease (PD) is an idiopathic disorder with no known cure. With number of cases steadily rising around the world, it is imperative to turn to the underlying cellular and molecular mechanisms of the disease manifestation and neurodegeneration to craft novel modes of therapy. VPS35 is one of the few genes that have identified and definitively linked to familial PD. The particular mutation that has been associated is known to cause dysfunction of a key cellular process known as autophagy. This process is primarily responsible for clearance of unwanted, damaged or misfolded proteins, among other things. Our study reveals an …


Exposure To Estrogenic Endocrine Disrupting Chemicals And Brain Health, Mark Preciados May 2018

Exposure To Estrogenic Endocrine Disrupting Chemicals And Brain Health, Mark Preciados

FIU Electronic Theses and Dissertations

The overall objective of this dissertation was to examine exposures to the estrogenic endocrine disrupting chemicals (EEDCs), phthalates, bisphenol-A (BPA), and the metalloestrogens cadmium (Cd), arsenic (As), and manganese (Mn) in an older geriatric aged-population and examine associations with brain health. Given the evidence that EEDCs affect brain health and play a role in the development of cognitive dysfunction and neurodegenerative disease, and the constant environmental exposure through foods and everyday products has led this to becoming a great public health concern. Using a bioinformatic approach to find nuclear respiratory factor 1 (NRF1) gene targets involved in mitochondrial dysfunction, that …


The Role Of Daf-19 In Non-Ciliated Neurons: How Is Neural Development Regulated By Different Daf-19 Isoforms?, Zabdiel Ek Vazquez Jun 2016

The Role Of Daf-19 In Non-Ciliated Neurons: How Is Neural Development Regulated By Different Daf-19 Isoforms?, Zabdiel Ek Vazquez

Lawrence University Honors Projects

A degenerative disease-like phenotype, specifically reduction in synaptic protein levels in adult worms, is correlated with loss-of-function of the only RFX transcription factor gene, daf-19, in C. elegans. This gene encodes four known transcription factor isoforms, two of which are correlated with particular functions. The DAF-19C isoform activates genes responsible for cilia development, while DAF-19M is needed for cilia specification in males. A comparison of the transcriptome of daf-19 null and isogenic wild type adult worms suggests both positive and negative regulation of gene expression is correlated with the presence of DAF-19 proteins. We have assessed DAF-19 regulation …


Activation Of Target Gene Expression In Neurons By The C. Elegans Rfx Transcription Factor, Daf-19, Katherine P. Mueller Jun 2016

Activation Of Target Gene Expression In Neurons By The C. Elegans Rfx Transcription Factor, Daf-19, Katherine P. Mueller

Lawrence University Honors Projects

DAF-19, the only RFX transcription factor found in C. elegans, is required for the formation of neuronal sensory cilia. Four isoforms of the DAF-19 protein have been reported, and the m86 nonsense (null) mutation affecting all four isoforms has been shown to prevent cilia formation. Transcriptome analyses employing microarrays of L1 and adult stage worms were completed using RNA from daf-19(m86) worms and an isogenic wild type strain to identify additional putative DAF-19 target genes. Using transcriptional fusions with GFP, we compared the expression patterns of several potential gene targets using fluorescence confocal microscopy. Expression patterns were characterized in …


Role Of The Gcn5 Histone Acetyltransferase In Spinocerebellar Ataxia Type 7 And In Immature Neurons, Yi Chun Chen Dec 2011

Role Of The Gcn5 Histone Acetyltransferase In Spinocerebellar Ataxia Type 7 And In Immature Neurons, Yi Chun Chen

Dissertations & Theses (Open Access)

Spinocerebellar Ataxia type 7 (SCA7) is a neurodegenerative disease caused by expansion of a CAG repeat encoding a polyglutamine tract in ATXN7, a component of the SAGA histone acetyltransferase (HAT) complex. Previous studies provided conflicting evidence regarding the effects of polyQ-ATXN7 on the activity of Gcn5, the HAT catalytic subunit of SAGA. Here I showed that reducing Gcn5 expression accelerates both cerebellar and retinal degeneration in a mouse model of SCA7. Deletion of Gcn5 in Purkinje cells in mice expressing wild type Atxn7, however, causes only mild ataxia and does not lead to the early lethality observed in SCA7 mice. …