Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Genetics and Genomics

Molecular Analysis Of Ftsz-Ring Assembly In E. Coli Cytokinesis, Kuo-Hsiang Huang Sep 2016

Molecular Analysis Of Ftsz-Ring Assembly In E. Coli Cytokinesis, Kuo-Hsiang Huang

Dissertations, Theses, and Capstone Projects

An essential first step in bacterial division is the assembly of a cytokinetic ring (Z-ring) formed by the tubulin-like FtsZ at midcell. The highly conserved core domain of FtsZ has been reported to mediate assembly of FtsZ polymers in vivo and in vitro. Species-specific differences in the FtsZ C-terminal domain such as the FtsZ CTV region and interactions with several modulatory proteins such as ZapC and ZapD, restricted to certain bacterial classes, also serve as key determinants of FtsZ protofilament bundling. Here, we characterize (i) the roles of the FtsZ CTV region in mediating both longitudinal and lateral interactions …


The Regulation Of The Phosphatidate Phosphatase Gene Pah1 And Its Regulatory Role On Cell Homeostasis, Goldie Libby Sherr Sep 2016

The Regulation Of The Phosphatidate Phosphatase Gene Pah1 And Its Regulatory Role On Cell Homeostasis, Goldie Libby Sherr

Dissertations, Theses, and Capstone Projects

The Saccharomyces cerevisiae gene, PAH1, encodes a phosphatidate (PA) phosphatase that plays a fundamental role in lipid metabolism. PA phosphatases are key enzymes that catalyze the PA dephosphorylation reaction to form diacylglycerides, the first step in the synthesis of triacylglycerols. Pah1p, one of the main PA phosphatases in yeast, has not only emerged as a key player in lipid biosynthetic pathways, but also acts as an important regulator of nuclear membrane biogenesis, the transcriptional regulation of many inositol-sensitive upstream activating sequence (UASINO)containing genes needed for phospholipid synthesis, vacuole homeostasis, and lipid droplet formation. Due to its …


The Evolution Of The Viral Rna Sensor Oas1 In Old World Monkeys And Cetartiodactyls, Ian Fish Feb 2016

The Evolution Of The Viral Rna Sensor Oas1 In Old World Monkeys And Cetartiodactyls, Ian Fish

Dissertations, Theses, and Capstone Projects

Animals produce an array of sensors patrolling the intracellular environment poised to detect and respond to viral infection. The oligoadenylate synthetase family of enzymes comprises a crucial part of this innate immune response, directly signaling endonuclease activity responsible for inhibiting viral replication. Oligoadenylate synthetase 1 plays a vital role in animal susceptibility to pathogens including flaviviruses such as dengue, West Nile, and hepatitis c virus. This thesis includes a population level analysis of OAS1 diversity within macaque and baboon species followed by a broader survey of the gene in nineteen Old World monkeys. My research found that at the species …


Lim Protein Ajuba Participates In The Repression Of Atr-Mediated Dna Damage Response In Human Cells, Sampada Kalan Feb 2016

Lim Protein Ajuba Participates In The Repression Of Atr-Mediated Dna Damage Response In Human Cells, Sampada Kalan

Dissertations, Theses, and Capstone Projects

LIM proteins constitute a superfamily characterized by the presence of specialized domains called LIM. LIM domain is a unique double-zinc finger motif found in a variety of proteins and is mainly involved in protein-protein interactions. Previous work has implicated that members of the Zyxin subfamily of LIM proteins, namely TRIP6 and LPP are involved in the repression of the DNA damage response (DDR) at telomeres. We further explore if another member from this family has an influence on DDR prevention in the cells. Here, we describe a novel role for Ajuba, a Zyxin family LIM protein, in repressing inappropriate activation …


The Implications Of Chromatin Remodelers' Acetylation In Ino1 Activation, Michelle M. Esposito Feb 2016

The Implications Of Chromatin Remodelers' Acetylation In Ino1 Activation, Michelle M. Esposito

Dissertations, Theses, and Capstone Projects

It is known that histone acetylases (HATs) regulate gene expression, but only recently have new functional implications about remodelers’ acetylation emerged. For instance, the HAT, Gcn5p, is capable of acetylating the catalytic subunit of the nucleosome remodeling complex SWI/SNF, Snf2p, which results in the dissociation of the complex from chromatin. The implications of this acetylation and subsequent dissociation have yet to be explored with regard to transcriptional regulation and other possible mechanisms. To further understand the implications of remodeler acetylation, I used a yeast model system examining the expression of the inositol-3-phosphate synthase gene INO1. Through chromatin immunoprecipitation (ChIP) …