Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Genetics and Genomics

Trna Anticodon Cleavage By Target-Activated Crispr-Cas13a Effector, Ishita Jain, Matvey Kolesnik, Konstantin Kuznedelov, Leonid Minakhin, Natalia Morozova, Anna Shiriaeva, Alexandr Kirillov, Sofia Medvedeva, Alexei Livenskyi, Laura Kazieva, Kira S Makarova, Eugene V Koonin, Sergei Borukhov, Konstantin Severinov, Ekaterina Semenova Apr 2024

Trna Anticodon Cleavage By Target-Activated Crispr-Cas13a Effector, Ishita Jain, Matvey Kolesnik, Konstantin Kuznedelov, Leonid Minakhin, Natalia Morozova, Anna Shiriaeva, Alexandr Kirillov, Sofia Medvedeva, Alexei Livenskyi, Laura Kazieva, Kira S Makarova, Eugene V Koonin, Sergei Borukhov, Konstantin Severinov, Ekaterina Semenova

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA–guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread. We show here that the principal form of collateral RNA degradation elicited by Leptotrichia shahii Cas13a expressed in Escherichia coli cells is the cleavage of anticodons in a subset of transfer RNAs (tRNAs) with uridine-rich anticodons. This tRNA cleavage is accompanied by inhibition of protein synthesis, thus …


Analysis Of Differential Mrna And Mirna Expression In An Alzheimer’S Disease Mouse Model, Amanda Hazy, Matthew Dalton Oct 2014

Analysis Of Differential Mrna And Mirna Expression In An Alzheimer’S Disease Mouse Model, Amanda Hazy, Matthew Dalton

Other Undergraduate Scholarship

Research has shown that changes in gene expression play a critical role in the development of Alzheimer’s Disease (AD). Our project will evaluate genome-wide RNA expression patterns from brain and blood in an AD mouse model. This analysis will provide insight regarding the mechanisms of AD pathology as well as determine a possible diagnostic tool utilizing RNA expression patterns found in the blood as biomarkers for AD.


Prolonged Cyclooxygenase-2 Induction In Neurons And Glia Following Traumatic Brain Injury In The Rat, K I Strauss, M F Barbe, R M Marshall Demarest, R Raghupathi, S Mehta, R K Narayan Aug 2000

Prolonged Cyclooxygenase-2 Induction In Neurons And Glia Following Traumatic Brain Injury In The Rat, K I Strauss, M F Barbe, R M Marshall Demarest, R Raghupathi, S Mehta, R K Narayan

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Cyclooxygenase-2 (COX2) is a primary inflammatory mediator that converts arachidonic acid into precursors of vasoactive prostaglandins, producing reactive oxygen species in the process. Under normal conditions COX2 is not detectable, except at low abundance in the brain. This study demonstrates a distinctive pattern of COX2 increases in the brain over time following traumatic brain injury (TBI). Quantitative lysate ribonuclease protection assays indicate acute and sustained increases in COX2 mRNA in two rat models of TBI. In the lateral fluid percussion model, COX2 mRNA is significantly elevated (>twofold, p < 0.05, Dunnett) at 1 day postinjury in the injured cortex and bilaterally in the hippocampus, compared to sham-injured controls. In the lateral cortical impact model (LCI), COX2 mRNA peaks around 6 h postinjury in the ipsilateral cerebral cortex (fivefold induction, p < 0.05, Dunnett) and in the ipsilateral and contralateral hippocampus (two- and six-fold induction, respectively, p < 0.05, Dunnett). Increases are sustained out to 3 days postinjury in the injured cortex in both models. Further analyses use the LCI model to evaluate COX2 induction. Immunoblot analyses confirm increased levels of COX2 protein in the cortex and hippocampus. Profound increases in COX2 protein are observed in the cortex at 1-3 days, that return to sham levels by 7 days postinjury (p < 0.05, Dunnett). The cellular pattern of COX2 induction following TBI has been characterized using immunohistochemistry. COX2-immunoreactivity (-ir) rises acutely (cell numbers and intensity) and remains elevated for several days following TBI. Increases in COX2-ir colocalize with neurons (MAP2-ir) and glia (GFAP-ir). Increases in COX2-ir are observed in cerebral cortex and hippocampus, ipsilateral and contralateral to injury as early as 2 h postinjury. Neurons in the ipsilateral parietal, perirhinal and piriform cortex become intensely COX2-ir from 2 h to at least 3 days postinjury. In agreement with the mRNA and immunoblot results, COX2-ir appears greatest in the contralateral hippocampus. Hippocampal COX2-ir progresses from the pyramidal cell layer of the CA1 and CA2 region at 2 h, to the CA3 pyramidal cells and dentate polymorphic and granule cell layers by 24 h postinjury. These increases are distinct from those observed following inflammatory challenge, and correspond to brain areas previously identified with the neurological and cognitive deficits associated with TBI. While COX2 induction following TBI may result in selective beneficial responses, chronic COX2 production may contribute to free radical mediated cellular damage, vascular dysfunction, and alterations in cellular metabolism. These may cause secondary injuries to the brain that promote neuropathology and worsen behavioral outcome.


Transcriptional Regulation Of The Bmp2 Gene: Retinoic Acid Induction In F9 Embryonal Carcinoma Cells And Saccharomyces Cerevisiae, Loree C. Heller, Yong Li, Kevin L. Abrams, Melissa B. Rogers Jan 1999

Transcriptional Regulation Of The Bmp2 Gene: Retinoic Acid Induction In F9 Embryonal Carcinoma Cells And Saccharomyces Cerevisiae, Loree C. Heller, Yong Li, Kevin L. Abrams, Melissa B. Rogers

Bioelectrics Publications

Bmp2, a highly conserved member of the transforming growth factor-beta gene family, is crucial for normal development. Retinoic acid, combined with cAMP analogs, sharply induces the Bmp2 mRNA during the differentiation of F9 embryonal carcinoma cells into parietal endoderm. Retinoic acid (RA) also induces the Bmp2 gene in chick limb buds. Since normal Bmp2 expression may require an endogenous retinoid signal and aberrant Bmp2 expression may cause some aspects of RA-induced teratogenesis, we studied the mechanism underlying the induction of Bmp2. Measurements of the Bmp2 mRNA half-life and nuclear run-on assays …


The Characterization Of Ribosomal Rna Gene Chromatin From Physarum Polycephalum, Sally A. Amero, Vicky L. Montoya, Wendy L. Murdoch, Roy C. Ogle, John L. Keating, Robert M. Grainger Aug 1988

The Characterization Of Ribosomal Rna Gene Chromatin From Physarum Polycephalum, Sally A. Amero, Vicky L. Montoya, Wendy L. Murdoch, Roy C. Ogle, John L. Keating, Robert M. Grainger

School of Medical Diagnostics & Translational Sciences Faculty Publications

We have isolated ribosomal RNA gene (rDNA) chromatin from Physarum polycephalum using a nucleolar isolation procedure that minimizes protein loss from chromatin and, subsequently, either agarose gel electrophoresis or metrizamide gradient centrifugation to purify this chromatin fraction (Amero, S. A., Ogle, R. C., Keating, J. L., Montoya, V. L., Murdoch, W. L., and Grainger, R. M. (1988) J. Biol. Chem. 263, 10725-10733). Metrizamide-purified rDNA chromatin obtained from nucleoli isolated according to the new procedure has a core histone/DNA ratio of 0.77:1. The major core histone classes comigrate electrophoretically with their nuclear counterparts on Triton-acid-urea/sodium dodecyl sulfate two-dimensional gels, although they …


The Purification Of Ribosomal Rna Gene Chromatin From Physarum Polycephalum, Sally A. Amero, Roy C. Ogle, John L. Keating, Vicky L. Montoya, Wendy L. Murdoch, Robert M. Grainger Jan 1988

The Purification Of Ribosomal Rna Gene Chromatin From Physarum Polycephalum, Sally A. Amero, Roy C. Ogle, John L. Keating, Vicky L. Montoya, Wendy L. Murdoch, Robert M. Grainger

School of Medical Diagnostics & Translational Sciences Faculty Publications

We have undertaken the purification of ribosomal RNA gene (rDNA) chromatin from the slime mold Physarum polycephalum, in order to study its chromatin structure. In this organism rDNA exists in nucleoli as highly repeated minichromosomes, and one can obtain crude chromatin fractions highly enriched in rDNA from isolated nucleoli. We first developed a nucleolar isolation method utilizing polyamines as stabilization agents that results in a chromatin fraction containing far more protein than is obtained by the more commonly used divalent cation isolation methods. The latter method appears to result in extensive histone loss during chromatin isolations. Two methods were then …