Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Genetics and Genomics

Characterization Of The Marine Sponge Amphimedon Compressa Microbiome Across A Spatial Gradient, Renee Michelle Potens May 2016

Characterization Of The Marine Sponge Amphimedon Compressa Microbiome Across A Spatial Gradient, Renee Michelle Potens

HCNSO Student Theses and Dissertations

Diverse and ecologically important microbial communities (microbiomes) are symbiotic within marine sponges. In this study, the microbiome of Amphimedon compressa from three sample locations (Broward and Dade Counties, Southeast Florida, USA and the Southern Caribbean, Bocas del Toro, Panama) is characterized using 16S rRNA Illumina sequencing. The predominant taxa are Proteobacteria and Cyanobacteria, as expected for Low Microbial Abundance sponges, accounting for over 53% of the total microbiome community. The numbers of Operational Taxonomic Units (OTUs) decrease from Broward County (2,900) to Dade County (2,300) and then Bocas del Toro (1,200). The correlates to a decreasing north-south gradient of …


Addressing The Black Box Phenomenon Of Genome Sequencing And Assembly, Brandon Carter May 2015

Addressing The Black Box Phenomenon Of Genome Sequencing And Assembly, Brandon Carter

Senior Honors Projects, 2010-2019

Genomics, a study of all genetic material in an organism, is a new discipline having a great impact on medicine, agriculture, and environmental phenomena. Most undergraduate faculty members were not formally trained in genomics and must retool themselves in order to stay current with these evolving technologies. Advances in sequencing technology have resulted in an explosion of “big data” that can only be managed and analyzed using digital methods. Multiple complex computer programs are required to teach students the concepts using hands-on methods. These programs are challenging to use, especially since the same faculty members lacking genomics training were not …


Large-Scale Identification Of Chemically Induced Mutations In Drosophila Melanogaster., Nele A Haelterman, Lichun Jiang, Yumei Li, Vafa Bayat, Hector Sandoval, Berrak Ugur, Kai Li Tan, Ke Zhang, Danqing Bei, Bo Xiong, Wu-Lin Charng, Theodore Busby, Adeel Jawaid, Gabriela David, Manish Jaiswal, Koen J T Venken, Shinya Yamamoto, Rui Chen, Hugo J Bellen Oct 2014

Large-Scale Identification Of Chemically Induced Mutations In Drosophila Melanogaster., Nele A Haelterman, Lichun Jiang, Yumei Li, Vafa Bayat, Hector Sandoval, Berrak Ugur, Kai Li Tan, Ke Zhang, Danqing Bei, Bo Xiong, Wu-Lin Charng, Theodore Busby, Adeel Jawaid, Gabriela David, Manish Jaiswal, Koen J T Venken, Shinya Yamamoto, Rui Chen, Hugo J Bellen

Faculty Publications

Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of …


Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill Jul 2014

Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill

Department of Biological Sciences Publications

The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.


Electrotransfer Of Single-Stranded Or Double-Stranded Dna Induces Complete Regression Of Palpable B16.F10 Mouse Melanomas, Loree Heller, Vesba Todorovic, Maja Cemazar Dec 2013

Electrotransfer Of Single-Stranded Or Double-Stranded Dna Induces Complete Regression Of Palpable B16.F10 Mouse Melanomas, Loree Heller, Vesba Todorovic, Maja Cemazar

Bioelectrics Publications

Enhanced tumor delivery of plasmid DNA with electric pulses in vivo has been confirmed in many preclinical models. Intratumor electrotransfer of plasmids encoding therapeutic molecules has reached Phase II clinical trials. In multiple preclinical studies, a reduction in tumor growth, increased survival or complete tumor regression have been observed in control groups in which vector or backbone plasmid DNA electrotransfer was performed. This study explores factors that could produce this antitumor effect. The specific electrotransfer pulse protocol employed significantly potentiated the regression. Tumor regression was observed after delivery of single-stranded or double-stranded DNA with or without CpG motifs in both …


Borrelia Burgdorferi Cp32 Bpab Modulates Expression Of The Prophage Nucp Nuclease And Ssbp Single-Stranded Dna-Binding Protein, Alicia M. Chenail, Brandon L. Jutras, Claire A. Adams, Logan H. Burns, Amy Bowman, Ashutosh Verma, Brian Stevenson Sep 2012

Borrelia Burgdorferi Cp32 Bpab Modulates Expression Of The Prophage Nucp Nuclease And Ssbp Single-Stranded Dna-Binding Protein, Alicia M. Chenail, Brandon L. Jutras, Claire A. Adams, Logan H. Burns, Amy Bowman, Ashutosh Verma, Brian Stevenson

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The Borrelia burgdorferi BpaB proteins of the spirochete's ubiquitous cp32 prophages are DNA-binding proteins, required both for maintenance of the bacteriophage episomes and for transcriptional regulation of the cp32 erp operons. Through use of DNase I footprinting, we demonstrate that BpaB binds the erp operator initially at the sequence 5′-TTATA-3′. Electrophoretic mobility shift assays indicated that BpaB also binds with high affinity to sites located in the 5′ noncoding regions of two additional cp32 genes. Characterization of the proteins encoded by those genes indicated that they are a single-stranded DNA-binding protein and a nuclease, which we named SsbP and NucP, …


High Ethanol Titers From Cellulose By Using Metabolically Engineered Thermophilic, Anaerobic Microbes, D. Aaron Argyros, Shital A. Tripathi, Trisha F. Barrett, Stephen R. Rogers, Lawrence F. Feinberg, Daniel G. Olson, Justin M. Foden, Bethany B. Miller, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza Sep 2011

High Ethanol Titers From Cellulose By Using Metabolically Engineered Thermophilic, Anaerobic Microbes, D. Aaron Argyros, Shital A. Tripathi, Trisha F. Barrett, Stephen R. Rogers, Lawrence F. Feinberg, Daniel G. Olson, Justin M. Foden, Bethany B. Miller, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza

Dartmouth Scholarship

This work describes novel genetic tools for use in Clostridium thermocellum that allow creation of unmarked mutations while using a replicating plasmid. The strategy employed counter-selections developed from the native C. thermocellum hpt gene and the Thermoanaerobacterium saccharolyticum tdk gene and was used to delete the genes for both lactate dehydrogenase (Ldh) and phosphotransacetylase (Pta). The Δldh Δpta mutant was evolved for 2,000 h, resulting in a stable strain with 40:1 ethanol selectivity and a 4.2-fold increase in ethanol yield over the wild-type strain. Ethanol production from cellulose was investigated with an engineered coculture of organic acid-deficient engineered strains of …


Natural Competence In Thermoanaerobacter And Thermoanaerobacterium Species, A Joe Shaw, David A. Hogsett, Lee R. Lynd May 2010

Natural Competence In Thermoanaerobacter And Thermoanaerobacterium Species, A Joe Shaw, David A. Hogsett, Lee R. Lynd

Dartmouth Scholarship

Low-G+C thermophilic obligate anaerobes in the class Clostridia are considered among the bacteria most resistant to genetic engineering due to the difficulty of introducing foreign DNA, thus limiting the ability to study and exploit their native hydrolytic and fermentative capabilities. Here, we report evidence of natural genetic competence in 13 Thermoanaerobacter and Thermoanaerobacterium strains previously believed to be difficult to transform or genetically recalcitrant.

In Thermoanaerobacterium saccharolyticum JW/SL-YS485, natural competence- mediated DNA incorporation occurs during the exponential growth phase with both replicating plasmid and homologous recombination-based integration, and circular or linear DNA. In T. saccharolyticum, disruptions of genes similar to …


Electrically Mediated Delivery Of Plasmid Dna To The Skin, Using A Multielectrode Array, Richard Heller, Yolmari Criz, Loree C. Heller, Richard A. Gilbert, Mark J. Jaroszeski Mar 2010

Electrically Mediated Delivery Of Plasmid Dna To The Skin, Using A Multielectrode Array, Richard Heller, Yolmari Criz, Loree C. Heller, Richard A. Gilbert, Mark J. Jaroszeski

Bioelectrics Publications

The easy accessibility of skin makes it an excellent target for gene transfer protocols. To take full advantage of skin as a target for gene transfer, it is important to establish an efficient and reproducible delivery system. Electroporation is a strong candidate to meet this delivery criterion. Electroporation of the skin is a simple, direct, in vivo method to deliver genes for therapy. Previously, delivery to the skin was performed by means of applicators with relatively large distances between electrodes, resulting in significant muscle stimulation and pain. These applicators also had limitations in controlling the directionality of the applied field. …


Comparison Of Dna Pyrosequencing With Alternative Methods For Identification Of Mycobacteria, Loree C. Heller, Michael Jones, Ray H. Widen Jun 2008

Comparison Of Dna Pyrosequencing With Alternative Methods For Identification Of Mycobacteria, Loree C. Heller, Michael Jones, Ray H. Widen

Bioelectrics Publications

Identification of mycobacterial clinical isolates by pyrosequencing within the hypervariable A region of the 16S rRNA gene was compared to other identification methods. For >90% of isolates, these identifications correlated to the level of complex or species. For identification of many mycobacteria, pyrosequencing offers an inexpensive alternative to traditional sequencing.


Saccharomyces Cerevisiae-Based Molecular Tool Kit For Manipulation Of Genes From Gram-Negative Bacteria, Robert M. Q. Shanks, Nicky C. Caiazza, Shannon M. Hinsa, Christine M. Toutain, George A. O'Toole Jul 2006

Saccharomyces Cerevisiae-Based Molecular Tool Kit For Manipulation Of Genes From Gram-Negative Bacteria, Robert M. Q. Shanks, Nicky C. Caiazza, Shannon M. Hinsa, Christine M. Toutain, George A. O'Toole

Dartmouth Scholarship

A tool kit of vectors was designed to manipulate and express genes from a wide range of gram-negative species by using in vivo recombination. Saccharomyces cerevisiae can use its native recombination proteins to combine several amplicons in a single transformation step with high efficiency. We show that this technology is particularly useful for vector design. Shuttle, suicide, and expression vectors useful in a diverse group of bacteria are described and utilized. This report describes the use of these vectors to mutate clpX and clpP of the opportunistic pathogen Pseudomonas aeruginosa and to explore their roles in biofilm formation and surface …


Comparison Of Methods For Dna Isolation From Food Samples For Detection Of Shiga Toxin-Producing Escherichia Coli By Real-Time Pcr, Loree C. Heller, Carisa R. Davis, K. Kealy Peak, David Wingfield, Andrew C. Cannons, Philip T. Amuso, Jacqueline Cattani Mar 2003

Comparison Of Methods For Dna Isolation From Food Samples For Detection Of Shiga Toxin-Producing Escherichia Coli By Real-Time Pcr, Loree C. Heller, Carisa R. Davis, K. Kealy Peak, David Wingfield, Andrew C. Cannons, Philip T. Amuso, Jacqueline Cattani

Bioelectrics Publications

In this study, food samples were intentionally contaminated with Escherichia coli O157:H7, and then DNA was isolated by using four commercial kits. The isolated DNA samples were compared by using real-time PCR detection of the Shiga toxin genes. The four kits tested worked similarly.