Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Genetics and Genomics

Detection, Diversity, And Evolution Of Fungal Nitric Oxide Reductases (P450nor), Steven Adam Higgins Aug 2017

Detection, Diversity, And Evolution Of Fungal Nitric Oxide Reductases (P450nor), Steven Adam Higgins

Doctoral Dissertations

Nitrous oxide (N2O) is a gas responsible for significant ozone layer depletion and contributes to greenhouse effects in Earth’s atmosphere. N2O is primarily generated by denitrification, whereby nitrate (NO3-) or nitrite (NO2-) is converted to gaseous N2O or N2. Teragram quantities of N2O are emitted annually from agricultural soils treated with nitrogenous fertilizers due to the activity of soil microbiota. Although bacteria and fungi harbor genes permitting denitrification, fungi lack NosZ, an enzyme responsible for reducing N2O into inert N2 gas. Historically, scientists have linked fungi …


Accumulation And Expression Of Multiple Antibiotic Resistance Genes In Arcobacter Cryaerophilus That Thrives In Sewage, Jess A. Millar, Rahul Raghavan Apr 2017

Accumulation And Expression Of Multiple Antibiotic Resistance Genes In Arcobacter Cryaerophilus That Thrives In Sewage, Jess A. Millar, Rahul Raghavan

Biology Faculty Publications and Presentations

We explored the bacterial diversity of untreated sewage influent samples of a wastewater treatment plant in Tucson, AZ and discovered that Arcobacter cryaerophilus, an emerging human pathogen of animal origin, was the most dominant bacterium. The other highly prevalent bacteria were members of the phyla Bacteroidetes and Firmicutes, which are major constituents of human gut microbiome, indicating that bacteria of human and animal origin intermingle in sewage. By assembling a near-complete genome of A. cryaerophilus, we show that the bacterium has accumulated a large number of antibiotic resistance genes (ARGs) probably enabling it to thrive in the wastewater. We also …


Genomic Analysis Of Factors Associated With Low Prevalence Of Antibiotic Resistance In Extraintestinal Pathogenic Escherichia Coli Sequence Type 95 Strains, Craig M. Stephens, Sheila Adams-Sapper, Manraj Sekhon, James R. Johnson, Lee W. Riley Apr 2017

Genomic Analysis Of Factors Associated With Low Prevalence Of Antibiotic Resistance In Extraintestinal Pathogenic Escherichia Coli Sequence Type 95 Strains, Craig M. Stephens, Sheila Adams-Sapper, Manraj Sekhon, James R. Johnson, Lee W. Riley

Biology

Extraintestinal pathogenic Escherichia coli (ExPEC) strains belonging to multilocus sequence type 95 (ST95) are globally distributed and a common cause of infections in humans and domestic fowl. ST95 isolates generally show a lower prevalence of acquired antimicrobial resistance than other pandemic ExPEC lineages. We took a genomic approach to identify factors that may underlie reduced resistance. We fully assembled genomes for four ST95 isolates representing the four major fimH-based lineages within ST95 and also analyzed draft-level genomes from another 82 ST95 isolates, largely from the western United States. The fully assembled genomes of antibiotic-resistant isolates carried resistance genes exclusively on …


Review Of The Algal Biology Program Within The National Alliance For Advanced Biofuels And Bioproducts, Clifford J. Unkefer, Richard T. Sayre, Jon K. Magnuson, Daniel B. Anderson, Ivan Baxter, Ian K. Balby, Judith K. Brown, Michael Carleton, Rose Ann Cattolico, Taraka Dale, Timothy P. Devarenne, C. Meghan Downes, Susan K. Dutcher, David T. Fox, Ursula Goodenough, Jan Jaworski, Jonathan E. Holladay, David M. Kramer, Andrew T. Koppisch, Mary S. Lipton, Babetta L. Marrone, Margaret Mccormick, István Molnár, John B. Mott, Kimberly L. Ogden, Ellen A. Panisko, Matteo Pellegrini, Juergen Polle, James W. Richardson, Martin Sabarsky, Shawn R. Starkenburg, Gary D. Stormo, Munehiro Teshima, Scott N. Twary, Pat J. Unkefer, Joshua S. Yuan, José A. Olivares Jan 2017

Review Of The Algal Biology Program Within The National Alliance For Advanced Biofuels And Bioproducts, Clifford J. Unkefer, Richard T. Sayre, Jon K. Magnuson, Daniel B. Anderson, Ivan Baxter, Ian K. Balby, Judith K. Brown, Michael Carleton, Rose Ann Cattolico, Taraka Dale, Timothy P. Devarenne, C. Meghan Downes, Susan K. Dutcher, David T. Fox, Ursula Goodenough, Jan Jaworski, Jonathan E. Holladay, David M. Kramer, Andrew T. Koppisch, Mary S. Lipton, Babetta L. Marrone, Margaret Mccormick, István Molnár, John B. Mott, Kimberly L. Ogden, Ellen A. Panisko, Matteo Pellegrini, Juergen Polle, James W. Richardson, Martin Sabarsky, Shawn R. Starkenburg, Gary D. Stormo, Munehiro Teshima, Scott N. Twary, Pat J. Unkefer, Joshua S. Yuan, José A. Olivares

Publications and Research

In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortiumbegan, littlewas known about themolecular basis of algal biomass or oil production. Very fewalgal genome sequenceswere available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played bymetabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genome …