Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Genetics and Genomics

Elucidating The Impact Of Sos-Response Timing In On Escherichia Coli Survival Following Treatment With Fluoroquinolone Topoisomerase Inhibitors, Stephanie Schofield May 2023

Elucidating The Impact Of Sos-Response Timing In On Escherichia Coli Survival Following Treatment With Fluoroquinolone Topoisomerase Inhibitors, Stephanie Schofield

Honors Scholar Theses

Antibiotic treatment failure is a public health crisis, with a 2019 report stating that roughly 35,000 deaths occur in the United States yearly due to bacterial infections that are unresponsive to antibiotics (1). One complication in the treatment of bacterial infection is antibiotic persistence which further compromises our battle to effectively treat infection. Bacterial persisters can exist in clonal bacterial cultures and can tolerate antibiotic treatment by undergoing reversible phenotypic changes. They can survive drug concentrations that their genetically identical kin cannot. Some persisters remain in a slow growing state and are difficult to target with current antibiotics. A specific …


A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani May 2023

A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani

Honors Scholar Theses

Bacteria, such as Escherichia coli, have an inducible system in response to DNA damage termed the SOS response. This system is activated when the replicative DNA polymerase (Pol) III encounters a lesion, uncouples from DNA helicase, and single-stranded DNA (ssDNA) accumulates at the replication fork. In this study, we investigated DNA-peptide crosslink (DpC), a common lesion that results from cross-linking of proteins or peptides, UV irradiation, and alkylating agents. To increase survival following formation of a lesion, the SOS response can utilize homologous recombination, translesion synthesis (TLS), or excision repair. With TLS, the levels of DNA Pol II, IV, …


The Effect Of Fibrodysplasia Ossificans Progressiva On The Tongue, Amy Backal, Amanda Harrop, David J. Goldhamer Dr. Jun 2022

The Effect Of Fibrodysplasia Ossificans Progressiva On The Tongue, Amy Backal, Amanda Harrop, David J. Goldhamer Dr.

University Scholar Projects

FOP is a rare genetic disorder in which skeletal muscle and associated connective tissue progressively turn to bone through a process called heterotopic ossification (HO). The extra skeletal bone growth is cumulative, eventually trapping patients in a second skeleton that eventually leads to death by asphyxiation. The FOP mutation is autosomal dominant that can be inherited or acquired sporadically. Unfortunately, FOP is currently incurable with no therapeutic options to inhibit bone growth or reduce existing bone nodules. My project intends to further our understanding of the cellular mechanisms of the disease within the tongue muscle. A population of cells known …


The Effect Of Fibrodysplasia Ossificans Progressiva On The Tongue, Amy Backal, Amanda Harrop, David J. Goldhamer Dr. Jun 2022

The Effect Of Fibrodysplasia Ossificans Progressiva On The Tongue, Amy Backal, Amanda Harrop, David J. Goldhamer Dr.

Honors Scholar Theses

FOP is a rare genetic disorder in which skeletal muscle and associated connective tissue progressively turn to bone through a process called heterotopic ossification (HO). The extra skeletal bone growth is cumulative, eventually trapping patients in a second skeleton that eventually leads to death by asphyxiation. The FOP mutation is autosomal dominant that can be inherited or acquired sporadically. Unfortunately, FOP is currently incurable with no therapeutic options to inhibit bone growth or reduce existing bone nodules. My project intends to further our understanding of the cellular mechanisms of the disease within the tongue muscle. A population of cells known …


When Problems Become Solutions: Harnessing The Osteogenic Capacity Of Disease-Causing Stem Cells To Repair Bone Fractures, Mehreen Pasha May 2022

When Problems Become Solutions: Harnessing The Osteogenic Capacity Of Disease-Causing Stem Cells To Repair Bone Fractures, Mehreen Pasha

University Scholar Projects

While we often perceive disease as negative, there is potential to engineer seemingly negative biological phenomena into therapeutics to treat a variety of human illnesses. Fibrodysplasia ossificans progressiva (FOP) is a genetic disorder involving uncontrolled, widespread, extraskeletal bone growth, or heterotopic ossification (HO). In FOP patients, stem cells called fibro/adipogenic progenitors (FAPs) follow an abnormal, osteogenic pathway. In the present study, we investigate whether we can adapt these Acvr1 mutant FAPs, which are exceptional at producing bone, to repair bone fractures in otherwise normal patients. The primary aims of this study are (1) to devise and optimize a novel method …


When Problems Become Solutions: Harnessing The Osteogenic Capacity Of Disease-Causing Stem Cells To Repair Bone Fractures, Mehreen Pasha May 2022

When Problems Become Solutions: Harnessing The Osteogenic Capacity Of Disease-Causing Stem Cells To Repair Bone Fractures, Mehreen Pasha

Honors Scholar Theses

While we often perceive disease as negative, there is potential to engineer seemingly negative biological phenomena into therapeutics to treat a variety of human illnesses. Fibrodysplasia ossificans progressiva (FOP) is a genetic disorder involving uncontrolled, widespread, extraskeletal bone growth, or heterotopic ossification (HO). In FOP patients, stem cells called fibro/adipogenic progenitors (FAPs) follow an abnormal, osteogenic pathway. In the present study, we investigate whether we can adapt these Acvr1 mutant FAPs, which are exceptional at producing bone, to repair bone fractures in otherwise normal patients. The primary aims of this study are (1) to devise and optimize a novel method …


Disrupting Monoallelic Expression Of Variant Surface Glycoprotein In Trypanosoma Brucei By A Non-Lethal Mutation In Class I Transcription Factor A, Sarah Platt May 2022

Disrupting Monoallelic Expression Of Variant Surface Glycoprotein In Trypanosoma Brucei By A Non-Lethal Mutation In Class I Transcription Factor A, Sarah Platt

Honors Scholar Theses

Human African trypanosomiasis (HAT) is a lethal disease caused by protozoan hemoflagellates of the genus Trypanosoma. Humans are vulnerable to two subspecies, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. At the crux of HAT lethality lie two uncommon genetic expression phenomena: monoallelic expression and antigenic variation. Combined, these mechanisms effectively shield trypanosomes from host immune systems, prolonging infections. Variant Surface Glycoproteins (VSGs) are the key outer membrane proteins involved in antigenic variation. By continuously changing the composition of cell surface antigens, trypanosomes can survive bouts of immunological detection and eventually traverse the blood-brain barrier. There are over two …


Synphilin-1 And Its Effects On Pathogenesis Of Parkinson’S Disease, Mirghani Mohamed Jun 2021

Synphilin-1 And Its Effects On Pathogenesis Of Parkinson’S Disease, Mirghani Mohamed

Honors Scholar Theses

Parkinson's Disease (PD) is a progressive neurodegenerative and movement disorder primarily caused by the degradation of dopaminergic neurons. Known markers of neurodegeneration in PD are Lewy Bodies, which are fibrillar aggregates that are found in the brains of PD patients. Lewy Bodies can accumulate from specific mutations in the SNCA gene that codes for alpha-synuclein, a protein enriched in presynaptic neurons. A mutated SNCA gene can cause conformational aggregates of alpha-synuclein to form toxic species mediating neuronal death. Research into alpha-synuclein has led to the discovery of a binding partner known as synphilin-1 that is also found in protein aggregates …


Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He May 2021

Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He

University Scholar Projects

Ependymoma is a primary solid tumor of the central nervous system. Supratentorial ependymoma (ST-EPN), a subtype of ependymomas, is driven by an oncogenic fusion between the ZFTA and RELA genes in 70% of cases. We introduced this fusion into neural progenitor cells of mice embryos via in utero electroporation of a non-viral binary piggyBac transposon system containing ZFTA-RELA. From preliminary data in the LoTurco lab, inducing the expression of ZFTA-RELA into different neural progenitor cells produces tumors of varying lethality and cellular composition. To define the cellular composition and subclonal diversity of ST-EPN tumors, we used single cell RNA-sequencing to …


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

University Scholar Projects

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

Honors Scholar Theses

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


Characterization Of A Mycoplasma Pneumoniae Cards Toxin Mutant, Nikaash Pasnoori May 2020

Characterization Of A Mycoplasma Pneumoniae Cards Toxin Mutant, Nikaash Pasnoori

Honors Scholar Theses

Mycoplasma pneumoniae is a high-burden pathogen which causes mild to significant infections of the respiratory system. According to the CDC, an estimated two million cases occur yearly in the United States alone, demonstrating the widespread effect of the pathogen. In addition to being the cause of respiratory infections, M. pneumoniae has also been implicated in exacerbating pre-existing asthma conditions. These morbidities make finding a vaccine candidate a vital part of easing the healthcare burden caused by the pathogen. The current mechanism of infection is unknown, but recent evidence points to the Community Acquired Respiratory Distress Syndrome (CARDS) toxin as being …


Notch Inhibitors And The Bet Inhibitor Jq-1 Decrease The Growth Of Primary Tumor Cells Derived From A Novel Mouse Model Of C11orf95-Rela Induced Brain Tumor, Ericka Randazzo, Jesse Dunnack, Justin Fang, Joseph Loturco Phd May 2019

Notch Inhibitors And The Bet Inhibitor Jq-1 Decrease The Growth Of Primary Tumor Cells Derived From A Novel Mouse Model Of C11orf95-Rela Induced Brain Tumor, Ericka Randazzo, Jesse Dunnack, Justin Fang, Joseph Loturco Phd

University Scholar Projects

Brain tumors are the most common childhood solid malignancy, and because of remarkable advances in treating many cancers outside of the brain, they have become the leading cause of cancer mortality in children. Ependymomas are a class of brain tumors which can be further subdivided into three groups based upon their location and genetic features. Of the three classes, supratentorial ependymomas are the only subgroup known to be marked by an oncogenic driver gene, which consists of a fusion mutation between the C11orf95 and RELA genes. C11orf95-RELA positive tumors are the most aggressive and lethal of …


Quantifying Expression Of Interneuron Subtype Markers For Dlx-2 Transfected Ng2 Cells, Timothy Nolan May 2019

Quantifying Expression Of Interneuron Subtype Markers For Dlx-2 Transfected Ng2 Cells, Timothy Nolan

Honors Scholar Theses

Neurons are a post-mitotic cell population, and therefore, they are not able to regenerate in vivo after a traumatic injury. Because inhibitory GABAergic interneurons and oligodendrocyte precursor cells (OPCs) are derived from the same precursor, recent studies have focused on transforming these OPCs into GABAergic neurons. However, there are different types of GABAergic interneurons that have different electrophysiological responses, which can lead to functional differences. The Nishiyama laboratory had already used a key gene in GABAergic interneuron and OPC differentiation, Distal-less homeobox 2 (Dlx-2), to transfect OPCs; early electrophysiology tests showed most of these transfected cells behaved like immature neurons, …


Modeling And Analyzing An Optogenetic System For Photoactivatable Protein Dissociation, Anvin Thomas, James Schaff May 2018

Modeling And Analyzing An Optogenetic System For Photoactivatable Protein Dissociation, Anvin Thomas, James Schaff

Honors Scholar Theses

Computational modeling of cell-cell interactions can grant clues and can answer questions about an experiment, especially for observations about binding interactions and kinetics. This approach was used to investigate an interaction between a light-oxygen-voltage (LOV) domain and an engineered protein called Zdark (Zdk). The LOV domain is membrane-bound while Zdk is cytosolic. The LOV domain and Zdk bind strongly in dark (Kd 26.2 nM), and weakly upon exposure to blue light (Kd > 4 μM). Total internal reflection fluorescence (TIRF) images are acquired of Zdk, the fluorescent species bound to a mCherry tag, and the loss of fluorescence is …


The Ush2a Gene: An Analysis Of Ultrasonic Vocalizations In A Mouse Model Of Usher Syndrome Type 2, Kiana R. Akhundzadeh May 2018

The Ush2a Gene: An Analysis Of Ultrasonic Vocalizations In A Mouse Model Of Usher Syndrome Type 2, Kiana R. Akhundzadeh

Honors Scholar Theses

Usher syndrome type 2 is a complex autosomal recessive genetic disorder that is characterized by moderate to severe congenital sensorineural hearing loss, the onset of retinitis pigmentosa in the second decade of life, and in some cases, vestibular dysfunction. Mutations in the USH2A gene account for 85% of cases of type 2. The USH2A gene is responsible for encoding the protein usherin, which has an important role in the development and function of inner ear hair cells and retinal photoreceptors. Until recently, it has been believed that carriers of the USH2A mutation were phenotype free. However, recent data has suggested …


Genotype-Specific Insertion Of Cytotoxic Genetic Elements Into Cancer Cells, Ryan Englander Apr 2018

Genotype-Specific Insertion Of Cytotoxic Genetic Elements Into Cancer Cells, Ryan Englander

University Scholar Projects

The new gene editing system CRISPR/Cas9, composed of a complex composed of a guide RNA and the Cas9 endonuclease, promises to revolutionize biological research and potentially allow clinicians to directly modify patient DNA in vivo. While its applications in the treatment of genetic diseases and in modifying immune cells for immunotherapy are currently being explored, CRISPR/Cas9’s potential utility as a modular system for targeting tumor-specific mutated sequences has not as of yet been explored. While CRISPR/Cas9 is specific enough to target small insertions and deletions or gross chromosomal rearrangements, it is not specific enough to reliably restrict editing to …


Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte May 2017

Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte

University Scholar Projects

Sickle cell disease (SCD) has been shown to be associated with decreased baseline immunity and thus increased susceptibility to infection. I sought to discern possible causes of this by looking into the correlations between SCD and hematopoiesis, the immune system and the neuroendocrine system, and ultimately by conducting experiments surrounding the impaired immune system of SCD. These experiments focused on the potential causes and effects of the diminution of B-1a cells in the SCD spleen. Adoptive transfers, infections with Streptococcus pneumoniae, and histologic imaging were conducted to establish if the diminution of the B-1a cells in the SCD spleen …


Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer May 2014

Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer

University Scholar Projects

Somatic mutations may drive tumorigenesis or lead to new, immunogenic epitopes (neoantigens). The immune system is thought to represses neoplastic growths through the recognition of neoantigens presented only by tumor cells. To study mutations as well as the immune response to mutation-generated antigens, we have created a conditional knockin mouse line with a gene encoding, 5’ to 3’, yellow fluorescent protein (YFP), ovalbumin (which is processed to the immunologically recognizable peptide, SIINFEKL), and cyan fluorescent protein (CFP), or, YFP-ovalbumin-CFP. A frame shift mutation has been created at the 5’ end of the ovalbumin gene, hence YFP should always be expressed, …


Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer May 2014

Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer

Honors Scholar Theses

Somatic mutations may drive tumorigenesis or lead to new, immunogenic epitopes (neoantigens). The immune system is thought to represses neoplastic growths through the recognition of neoantigens presented only by tumor cells. To study mutations as well as the immune response to mutation-generated antigens, we have created a conditional knockin mouse line with a gene encoding, 5’ to 3’, yellow fluorescent protein (YFP), ovalbumin (which is processed to the immunologically recognizable peptide, SIINFEKL), and cyan fluorescent protein (CFP), or, YFP-ovalbumin-CFP. A frame shift mutation has been created at the 5’ end of the ovalbumin gene, hence YFP should always be expressed, …


In Vitro Expression And Purification Of Class I Mhc Molecules, Loi Cheng May 2006

In Vitro Expression And Purification Of Class I Mhc Molecules, Loi Cheng

Honors Scholar Theses

The major histocompatibility complex (MHC) is a gene family responsible for many critical functions of the immune system in most vertebrates. The MHC consists of three classes differentiated by their structure and function, and MHC class I encodes antigen binding proteins as well as chaperone and accessory proteins such as tapasin. The purpose of this project is to reconstitute several human MHC class I molecules in their peptide-filled and peptide-deficient forms, and to purify these proteins for biochemical study. The expressed proteins include wild type and mutant variants of the fusion protein human leukocyte antigen HLA-B*0801-fos, and human beta-2-microglobulin (β2m). …