Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences

Toxicology and Cancer Biology Faculty Publications

Series

MutS Homolog 2 Protein

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Genetics and Genomics

Mutsβ Abundance And Msh3 Atp Hydrolysis Activity Are Important Drivers Of Ctg•Cag Repeat Expansions, Norma Keogh, Kara Y. Chan, Guo-Min Li, Robert S. Lahue Sep 2017

Mutsβ Abundance And Msh3 Atp Hydrolysis Activity Are Important Drivers Of Ctg•Cag Repeat Expansions, Norma Keogh, Kara Y. Chan, Guo-Min Li, Robert S. Lahue

Toxicology and Cancer Biology Faculty Publications

CTG•CAG repeat expansions cause at least twelve inherited neurological diseases. Expansions require the presence, not the absence, of the mismatch repair protein MutSβ (Msh2-Msh3 heterodimer). To evaluate properties of MutSβ that drive expansions, previous studies have tested under-expression, ATPase function or polymorphic variants of Msh2 and Msh3, but in disparate experimental systems. Additionally, some variants destabilize MutSβ, potentially masking the effects of biochemical alterations of the variations. Here, human Msh3 was mutated to selectively inactivate MutSβ. Msh3−/− cells are severely defective for CTG•CAG repeat expansions but show full activity on contractions. Msh3−/− cells provide a single, isogenic system …


Ubiquitin-Specific Peptidase 10 (Usp10) Deubiquitinates And Stabilizes Muts Homolog 2 (Msh2) To Regulate Cellular Sensitivity To Dna Damage, Mu Zhang, Chen Hu, Dan Tong, Shengyan Xiang, Kendra Williams, Wenlong Bai, Guo-Min Li, Gerold Bepler, Xiaohong Zhang Mar 2016

Ubiquitin-Specific Peptidase 10 (Usp10) Deubiquitinates And Stabilizes Muts Homolog 2 (Msh2) To Regulate Cellular Sensitivity To Dna Damage, Mu Zhang, Chen Hu, Dan Tong, Shengyan Xiang, Kendra Williams, Wenlong Bai, Guo-Min Li, Gerold Bepler, Xiaohong Zhang

Toxicology and Cancer Biology Faculty Publications

MSH2 is a key DNA mismatch repair protein, which plays an important role in genomic stability. In addition to its DNA repair function, MSH2 serves as a sensor for DNA base analogs-provoked DNA replication errors and binds to various DNA damage-induced adducts to trigger cell cycle arrest or apoptosis. Loss or depletion of MSH2 from cells renders resistance to certain DNA-damaging agents. Therefore, the level of MSH2 determines DNA damage response. Previous studies showed that the level of MSH2 protein is modulated by the ubiquitin-proteasome pathway, and histone deacetylase 6 (HDAC6) serves as an ubiquitin E3 ligase. However, the deubiquitinating …