Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences

University of Kentucky

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 112

Full-Text Articles in Genetics and Genomics

The Low Abundance Of Cpg In The Sars-Cov-2 Genome Is Not An Evolutionarily Signature Of Zap, Ali Afrasiabi, Hamid Alinejad-Rokny, Azad Khosh, Mostafa Rahnama, Nigel Lovell, Zhenming Xu, Diako Ebrahimi Feb 2022

The Low Abundance Of Cpg In The Sars-Cov-2 Genome Is Not An Evolutionarily Signature Of Zap, Ali Afrasiabi, Hamid Alinejad-Rokny, Azad Khosh, Mostafa Rahnama, Nigel Lovell, Zhenming Xu, Diako Ebrahimi

Plant Pathology Faculty Publications

The zinc finger antiviral protein (ZAP) is known to restrict viral replication by binding to the CpG rich regions of viral RNA, and subsequently inducing viral RNA degradation. This enzyme has recently been shown to be capable of restricting SARS-CoV-2. These data have led to the hypothesis that the low abundance of CpG in the SARS-CoV-2 genome is due to an evolutionary pressure exerted by the host ZAP. To investigate this hypothesis, we performed a detailed analysis of many coronavirus sequences and ZAP RNA binding preference data. Our analyses showed neither evidence for an evolutionary pressure acting specifically on CpG …


Epigenome-Wide Association Study Of Kidney Function Identifies Trans-Ethnic And Ethnic-Specific Loci, Charles E. Breeze, Anna Batorsky, Mi Kyeong Lee, Mindy D. Szeto, Xiaoguang Xu, Daniel L. Mccartney, Rong Jiang, Amit Patki, Holly J. Kramer, James M. Eales, Laura Raffield, Leslie Lange, Ethan Lange, Peter Durda, Yongmei Liu, Russ P. Tracy, David Van Den Berg, Nhlbi Trans-Omics For Precision Medicine (Topmed) Consortium, Topmed Mesa Multi-Omics Working Group, Kathryn L. Evans, William E. Kraus, Donna K. Arnett Apr 2021

Epigenome-Wide Association Study Of Kidney Function Identifies Trans-Ethnic And Ethnic-Specific Loci, Charles E. Breeze, Anna Batorsky, Mi Kyeong Lee, Mindy D. Szeto, Xiaoguang Xu, Daniel L. Mccartney, Rong Jiang, Amit Patki, Holly J. Kramer, James M. Eales, Laura Raffield, Leslie Lange, Ethan Lange, Peter Durda, Yongmei Liu, Russ P. Tracy, David Van Den Berg, Nhlbi Trans-Omics For Precision Medicine (Topmed) Consortium, Topmed Mesa Multi-Omics Working Group, Kathryn L. Evans, William E. Kraus, Donna K. Arnett

Epidemiology and Environmental Health Faculty Publications

BACKGROUND: DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate (eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach.

METHODS: The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina 450K or EPIC arrays. Ethnicity-stratified analyses were performed using linear …


The Giant Axolotl Genome Uncovers The Evolution, Scaling, And Transcriptional Control Of Complex Gene Loci, Siegfried Schloissnig, Akane Kawaguchi, Sergej Nowoshilow, Francisco Falcon, Leo Otsuki, Pietro Tardivo, Nataliya Timoshevskaya, Melissa C. Keinath, Jeramiah J. Smith, S. Randal Voss, Elly M. Tanaka Apr 2021

The Giant Axolotl Genome Uncovers The Evolution, Scaling, And Transcriptional Control Of Complex Gene Loci, Siegfried Schloissnig, Akane Kawaguchi, Sergej Nowoshilow, Francisco Falcon, Leo Otsuki, Pietro Tardivo, Nataliya Timoshevskaya, Melissa C. Keinath, Jeramiah J. Smith, S. Randal Voss, Elly M. Tanaka

Biology Faculty Publications

Vertebrates harbor recognizably orthologous gene complements but vary 100-fold in genome size. How chromosomal organization scales with genome expansion is unclear, and how acute changes in gene regulation, as during axolotl limb regeneration, occur in the context of a vast genome has remained a riddle. Here, we describe the chromosome-scale assembly of the giant, 32 Gb axolotl genome. Hi-C contact data revealed the scaling properties of interphase and mitotic chromosome organization. Analysis of the assembly yielded understanding of the evolution of large, syntenic multigene clusters, including the Major Histocompatibility Complex (MHC) and the functional regulatory landscape of the Fibroblast Growth …


Cloning And Functional Characterizations Of Circular Rnas From The Human Mapt Locus, Justin R. Welden Jan 2021

Cloning And Functional Characterizations Of Circular Rnas From The Human Mapt Locus, Justin R. Welden

Theses and Dissertations--Molecular and Cellular Biochemistry

Under pathophysiological conditions, the microtubule protein tau (MAPT) forms neurofibrillary tangles that are the hallmark of sporadic Alzheimer’s disease as well as familial frontotemporal dementias linked to chromosome 17 (FTDP-17). In this work, I report that MAPT forms circular RNAs through backsplicing of exon 12 to either exon 10 or exon 7 (12→10; 12→7), and that these circular RNAs are translated into proteins.

Using stable cell lines overexpressing the circular tau RNAs 12→7 and 12→10, we have discovered that the tau circular RNA 12→7 is translated in a rolling circle, giving rise to multiple proteins. This circular RNA …


Frontotemporal Dementia Nonsense Mutation Of Progranulin Rescued By Aminoglycosides, Lisha Kuang, Kei Hashimoto, Eric J. Huang, Matthew S. Gentry, Haining Zhu Jan 2020

Frontotemporal Dementia Nonsense Mutation Of Progranulin Rescued By Aminoglycosides, Lisha Kuang, Kei Hashimoto, Eric J. Huang, Matthew S. Gentry, Haining Zhu

Molecular and Cellular Biochemistry Faculty Publications

Frontotemporal dementia (FTD) is an early onset dementia and is characterized by progressive atrophy of the frontal and/or temporal lobes. FTD is highly heritable with mutations in progranulin accounting for 5-26% of cases in different populations. Progranulin is involved in endocytosis, secretion and lysosomal processes, but its function under physiological and pathological conditions remains to be defined. Many FTD-causing nonsense progranulin mutations contain a premature termination codon (PTC), thus progranulin haploinsufficiency has been proposed as a major disease mechanism. Currently, there is no effective FTD treatment or therapy.

Aminoglycosides are a class of antibiotics that possess a less known function …


Combination Of Investigational Cell-Based Therapy And Deep Brain Stimulation To Alter The Progression Of Parkinson’S Disease, Nader El Seblani Jan 2020

Combination Of Investigational Cell-Based Therapy And Deep Brain Stimulation To Alter The Progression Of Parkinson’S Disease, Nader El Seblani

Theses and Dissertations--Pharmacy

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and the motor symptoms are caused by progressive loss of midbrain dopamine neurons. There is no current treatment that can slow or reverse PD. Our current “DBS-Plus” clinical trial (NCT02369003) features the implantation in vivo of autologous Schwann cells (SCs) derived from a patient’s sural nerve into the substantia nigra pars compacta (SNpc) in combination with Deep Brain Stimulation (DBS) therapy for treating patients with advanced PD.

The central hypothesis of our research is that transdifferentiated SCs within conditioned nerve tissue will deliver pro-regenerative factors to enhance the survival of …


Apoe As A Metabolic Regulator In Humans, Mice, And Astrocytes, Brandon C. Farmer Jan 2020

Apoe As A Metabolic Regulator In Humans, Mice, And Astrocytes, Brandon C. Farmer

Theses and Dissertations--Physiology

Altered metabolic pathways appear to play central roles in the pathophysiology of late-onset Alzheimer’s disease (AD). Carrier status of the E4 allele of the APOE gene is the strongest genetic risk factor for late-onset AD, and increasing evidence suggests that E4 carriers may be at an increased risk for neurodegeneration based on inherent metabolic impairments. A new appreciation is forming for the role of APOE in cerebral metabolism, and how nutritional factors may impact this role. In chapter 1, the literature on nutritional interventions in E4 carriers aimed at mitigating disease risk is reviewed. Studies investigating the mechanism by which …


Microrna Regulation Of Epigenetic Modifiers In Breast Cancer, Brock Humphries, Zhishan Wang, Chengfeng Yang Jun 2019

Microrna Regulation Of Epigenetic Modifiers In Breast Cancer, Brock Humphries, Zhishan Wang, Chengfeng Yang

Toxicology and Cancer Biology Faculty Publications

Epigenetics refers to the heritable changes in gene expression without a change in the DNA sequence itself. Two of these major changes include aberrant DNA methylation as well as changes to histone modification patterns. Alterations to the epigenome can drive expression of oncogenes and suppression of tumor suppressors, resulting in tumorigenesis and cancer progression. In addition to modifications of the epigenome, microRNA (miRNA) dysregulation is also a hallmark for cancer initiation and metastasis. Advances in our understanding of cancer biology demonstrate that alterations in the epigenome are not only a major cause of miRNA dysregulation in cancer, but that miRNAs …


Mechanisms Of Trinucleotide Repeat Instability During Dna Synthesis, Kara Y. Chan Jan 2019

Mechanisms Of Trinucleotide Repeat Instability During Dna Synthesis, Kara Y. Chan

Theses and Dissertations--Toxicology and Cancer Biology

Genomic instability, in the form of gene mutations, insertions/deletions, and gene amplifications, is one of the hallmarks in many types of cancers and other inheritable genetic disorders. Trinucleotide repeat (TNR) disorders, such as Huntington’s disease (HD) and Myotonic dystrophy (DM) can be inherited and repeats may be extended through subsequent generations. However, it is not clear how the CAG repeats expand through generations in HD. Two possible repeat expansion mechanisms include: 1) polymerase mediated repeat extension; 2) persistent TNR hairpin structure formation persisting in the genome resulting in expansion after subsequent cell division. Recent in vitro studies suggested that a …


Als Mutations Of Fus Suppress Protein Translation And Disrupt The Regulation Of Nonsense-Mediated Decay, Marisa Kamelgarn, Jing Chen, Lisha Kuang, Huan Jin, Edward J. Kasarskis, Haining Zhu Dec 2018

Als Mutations Of Fus Suppress Protein Translation And Disrupt The Regulation Of Nonsense-Mediated Decay, Marisa Kamelgarn, Jing Chen, Lisha Kuang, Huan Jin, Edward J. Kasarskis, Haining Zhu

Toxicology and Cancer Biology Faculty Publications

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by preferential motor neuron death. Approximately 15% of ALS cases are familial, and mutations in the fused in sarcoma (FUS) gene contribute to a subset of familial ALS cases. FUS is a multifunctional protein participating in many RNA metabolism pathways. ALS-linked mutations cause a liquid–liquid phase separation of FUS protein in vitro, inducing the formation of cytoplasmic granules and inclusions. However, it remains elusive what other proteins are sequestered into the inclusions and how such a process leads to neuronal dysfunction and degeneration. In this study, we developed …


Floxed-Cassette Allelic Exchange Mutagenesis Enables Markerless Gene Deletion In Chlamydia Trachomatis And Can Reverse Cassette-Induced Polar Effects, Gabrielle Keb, Robert Hayman, Kenneth A. Fields Dec 2018

Floxed-Cassette Allelic Exchange Mutagenesis Enables Markerless Gene Deletion In Chlamydia Trachomatis And Can Reverse Cassette-Induced Polar Effects, Gabrielle Keb, Robert Hayman, Kenneth A. Fields

Microbiology, Immunology, and Molecular Genetics Faculty Publications

As obligate intracellular bacteria, Chlamydia spp. have evolved numerous, likely intricate, mechanisms to create and maintain a privileged intracellular niche. Recent progress in elucidating and characterizing these processes has been bolstered by the development of techniques enabling basic genetic tractability. Florescence-reported allelic exchange mutagenesis (FRAEM) couples chromosomal gene deletion with the insertion of a selection cassette encoding antibiotic resistance and green fluorescent protein (GFP). Similar to other bacteria, many chlamydial genes exist within polycistronic operons, raising the possibility of polar effects mediated by insertion cassettes. Indeed, FRAEM-mediated deletion of Chlamydia trachomatis tmeA negatively impacts the expression of tmeB. We …


Dna Methylation By Restriction Modification Systems Affects The Global Transcriptome Profile In Borrelia Burgdorferi, Timothey Casselli, Yvonne Tourand, Adam Scheidegger, William K. Arnold, Anna Proulx, Brian Stevenson, Catherine A. Brissette Dec 2018

Dna Methylation By Restriction Modification Systems Affects The Global Transcriptome Profile In Borrelia Burgdorferi, Timothey Casselli, Yvonne Tourand, Adam Scheidegger, William K. Arnold, Anna Proulx, Brian Stevenson, Catherine A. Brissette

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Prokaryote restriction modification (RM) systems serve to protect bacteria from potentially detrimental foreign DNA. Recent evidence suggests that DNA methylation by the methyltransferase (MTase) components of RM systems can also have effects on transcriptome profiles. The type strain of the causative agent of Lyme disease, Borrelia burgdorferi B31, possesses two RM systems with N6-methyladenosine (m6A) MTase activity, which are encoded by the bbe02 gene located on linear plasmid lp25 and bbq67 on lp56. The specific recognition and/or methylation sequences had not been identified for either of these B. burgdorferi MTases, and it was not previously known whether these RM …


Antibody Epitope Specificity For Dsdna Phosphate Backbone Is An Intrinsic Property Of The Heavy Chain Variable Germline Gene Segment Used, Tatjana Srdic-Rajic, Heinz Kohler, Vladimir Jurisic, Radmila Metlas Oct 2018

Antibody Epitope Specificity For Dsdna Phosphate Backbone Is An Intrinsic Property Of The Heavy Chain Variable Germline Gene Segment Used, Tatjana Srdic-Rajic, Heinz Kohler, Vladimir Jurisic, Radmila Metlas

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Analysis of protein sequences by the informational spectrum method (ISM) enables characterization of their specificity according to encoded information represented with defined frequency (F). Our previous data showed that F(0.367) is characteristic for variable heavy chain (VH) domains (a combination of variable (V), diversity (D) and joining (J) gene segments) of the anti-phosphocholine (PC) T15 antibodies and mostly dependent on the CDR2 region, a site for PC phosphate group binding. Because the T15 dsDNA-reactive U4 mutant also encodes F(0.367), we hypothesized that the same frequency may also be characteristic for anti-DNA antibodies. Data obtained from an analysis of 60 spontaneously …


Transcriptomic Insights On The Virulence-Controlling Csra, Badr, Rpon, And Rpos Regulatory Networks In The Lyme Disease Spirochete, William K. Arnold, Christina R. Savage, Kathryn G. Lethbridge, Trever C. Smith, Catherine A. Brisette, Janakiram Seshu, Brian Stevenson Aug 2018

Transcriptomic Insights On The Virulence-Controlling Csra, Badr, Rpon, And Rpos Regulatory Networks In The Lyme Disease Spirochete, William K. Arnold, Christina R. Savage, Kathryn G. Lethbridge, Trever C. Smith, Catherine A. Brisette, Janakiram Seshu, Brian Stevenson

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Borrelia burgdorferi, the causative agent of Lyme disease, survives in nature through a cycle that alternates between ticks and vertebrates. To facilitate this defined lifestyle, B. burgdorferi has evolved a gene regulatory network that ensures transmission between those hosts, along with specific adaptations to niches within each host. Several regulatory proteins are known to be essential for the bacterium to complete these critical tasks, but interactions between regulators had not previously been investigated in detail, due to experimental uses of different strain backgrounds and growth conditions. To address that deficit in knowledge, the transcriptomic impacts of four critical …


Novel Role Of Prostate Apoptosis Response-4 Tumor Suppressor In B-Cell Chronic Lymphocytic Leukemia, Mary Kathryn Mckenna, Sunil K. Noothi, Sara S. Alhakeem, Karine Z. Oben, Joseph T. Greene, Rajeswaran Mani, Kathryn L. Perry, James P. Collard, Jacqueline R. Rivas, Gerhard C. Hildebrandt, Roger A. Fleischman, Eric B. Durbin, John C. Byrd, Chi Wang, Natarajan Muthusamy, Vivek M. Rangnekar, Subbarao Bondada Jun 2018

Novel Role Of Prostate Apoptosis Response-4 Tumor Suppressor In B-Cell Chronic Lymphocytic Leukemia, Mary Kathryn Mckenna, Sunil K. Noothi, Sara S. Alhakeem, Karine Z. Oben, Joseph T. Greene, Rajeswaran Mani, Kathryn L. Perry, James P. Collard, Jacqueline R. Rivas, Gerhard C. Hildebrandt, Roger A. Fleischman, Eric B. Durbin, John C. Byrd, Chi Wang, Natarajan Muthusamy, Vivek M. Rangnekar, Subbarao Bondada

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Prostate apoptosis response-4 (Par-4), a proapoptotic tumor suppressor protein, is downregulated in many cancers including renal cell carcinoma, glioblastoma, endometrial, and breast cancer. Par-4 induces apoptosis selectively in various types of cancer cells but not normal cells. We found that chronic lymphocytic leukemia (CLL) cells from human patients and from Eµ-Tcl1 mice constitutively express Par-4 in greater amounts than normal B-1 or B-2 cells. Interestingly, knockdown of Par-4 in human CLL-derived Mec-1 cells results in a robust increase in p21/WAF1 expression and decreased growth due to delayed G1-to-S cell-cycle transition. Lack of Par-4 also increased the expression of p21 and …


Borrelia Burgdorferi Spovg Dna- And Rna-Binding Protein Modulates The Physiology Of The Lyme Disease Spirochete, Christina R. Savage, Brandon L. Jutras, Aaron Bestor, Kit Tilly, Patricia A. Rosa, Yvonne Tourand, Philip E. Stewart, Catherine A. Brissette, Brian Stevenson Jun 2018

Borrelia Burgdorferi Spovg Dna- And Rna-Binding Protein Modulates The Physiology Of The Lyme Disease Spirochete, Christina R. Savage, Brandon L. Jutras, Aaron Bestor, Kit Tilly, Patricia A. Rosa, Yvonne Tourand, Philip E. Stewart, Catherine A. Brissette, Brian Stevenson

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The SpoVG protein of Borrelia burgdorferi, the Lyme disease spirochete, binds to specific sites of DNA and RNA. The bacterium regulates transcription of spoVG during the natural tick-mammal infectious cycle and in response to some changes in culture conditions. Bacterial levels of spoVG mRNA and SpoVG protein did not necessarily correlate, suggesting that posttranscriptional mechanisms also control protein levels. Consistent with this, SpoVG binds to its own mRNA, adjacent to the ribosome-binding site. SpoVG also binds to two DNA sites in the glpFKD operon and to two RNA sites in glpFKD mRNA; that operon encodes genes necessary for glycerol catabolism …


Neutrophils From Both Susceptible And Resistant Mice Efficiently Kill Opsonized Listeria Monocytogenes, Michelle G. Pitts, Travis A. Combs, Sarah E. F. D'Orazio Apr 2018

Neutrophils From Both Susceptible And Resistant Mice Efficiently Kill Opsonized Listeria Monocytogenes, Michelle G. Pitts, Travis A. Combs, Sarah E. F. D'Orazio

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Inbred mouse strains differ in their susceptibility to infection with the facultative intracellular bacterium Listeria monocytogenes, largely due to delayed or deficient innate immune responses. Previous antibody depletion studies suggested that neutrophils (polymorphonuclear leukocytes [PMN]) were particularly important for clearance in the liver, but the ability of PMN from susceptible and resistant mice to directly kill L. monocytogenes has not been examined. In this study, we showed that PMN infiltrated the livers of BALB/c/By/J (BALB/c) and C57BL/6 (B6) mice in similar numbers and that both cell types readily migrated toward leukotriene B4 in an in vitro chemotaxis assay. However, …


A Comparison Of Oral And Intravenous Mouse Models Of Listeriosis, Michelle G. Pitts, Sarah E. F. D'Orazio Mar 2018

A Comparison Of Oral And Intravenous Mouse Models Of Listeriosis, Michelle G. Pitts, Sarah E. F. D'Orazio

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Listeria monocytogenes is one of several enteric microbes that is acquired orally, invades the gastric mucosa, and then disseminates to peripheral tissues to cause systemic disease in humans. Intravenous (i.v.) inoculation of mice with L. monocytogenes has been the most widely-used small animal model of listeriosis over the past few decades. The infection is highly reproducible and has been invaluable in deciphering mechanisms of adaptive immunity in vivo, particularly CD8+ T cell responses to intracellular pathogens. However, the i.v. model completely bypasses the gut phase of the infection. Recent advances in generating both humanized mice and murinized bacteria, as well …


Role Of Sex Chromosomes In Sexual Dimorphism Of Angii-Induced Abdominal Aortic Aneurysms, Yasir Alsiraj Jan 2018

Role Of Sex Chromosomes In Sexual Dimorphism Of Angii-Induced Abdominal Aortic Aneurysms, Yasir Alsiraj

Theses and Dissertations--Pharmacology and Nutritional Sciences

Abdominal aortic aneurysms (AAAs), a permanent dilation in the abdominal region of the aorta, is a highly sexually dimorphic disease. AAAs prevalence is ranging from 4-10 fold higher in males than females. Defining the mechanistic basis for reduced (in females) or increased (in males) AAA formation and progression may uncover potential therapeutic targets. The majority of studies examining sexual dimorphism focus on the role of sex hormones. However, genes residing on sex chromosomes, in addition to sex hormones, may contribute to sexual dimorphism of AAAs. For example, the X chromosome contains about 5% of the whole genome, but the role …


Comparison Between Listeria Sensu Stricto And Listeria Sensu Lato Strains Identifies Novel Determinants Involved In Infection, Jakob Schardt, Grant Jones, Stefanie Müller-Herbst, Kristina Schauer, Sarah E. F. D'Orazio, Thilo M. Fuchs Dec 2017

Comparison Between Listeria Sensu Stricto And Listeria Sensu Lato Strains Identifies Novel Determinants Involved In Infection, Jakob Schardt, Grant Jones, Stefanie Müller-Herbst, Kristina Schauer, Sarah E. F. D'Orazio, Thilo M. Fuchs

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The human pathogen L. monocytogenes and the animal pathogen L. ivanovii, together with four other species isolated from symptom-free animals, form the "Listeria sensu stricto" clade. The members of the second clade, "Listeria sensu lato", are believed to be solely environmental bacteria without the ability to colonize mammalian hosts. To identify novel determinants that contribute to infection by L. monocytogenes, the causative agent of the foodborne disease listeriosis, we performed a genome comparison of the two clades and found 151 candidate genes that are conserved in the Listeria sensu stricto species. Two factors were …


Ablation Of An Ovarian Tumor Family Deubiquitinase Exposes The Underlying Regulation Governing The Plasticity Of Cell Cycle Progression In Toxoplasma Gondii, Animesh Dhara, Rodrigo De Paula Baptista, Jessica C. Kissinger, Ernest Charles Snow, Anthony P. Sinai Nov 2017

Ablation Of An Ovarian Tumor Family Deubiquitinase Exposes The Underlying Regulation Governing The Plasticity Of Cell Cycle Progression In Toxoplasma Gondii, Animesh Dhara, Rodrigo De Paula Baptista, Jessica C. Kissinger, Ernest Charles Snow, Anthony P. Sinai

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The Toxoplasma genome encodes the capacity for distinct architectures underlying cell cycle progression in a life cycle stage-dependent manner. Replication in intermediate hosts occurs by endodyogeny, whereas a hybrid of schizogony and endopolygeny occurs in the gut of the definitive feline host. Here, we characterize the consequence of the loss of a cell cycle-regulated ovarian tumor (OTU family) deubiquitinase, OTUD3A of Toxoplasma gondii (TgOTUD3A; TGGT1_258780), in T. gondii tachyzoites. Rather than the mutation being detrimental, mutant parasites exhibited a fitness advantage, outcompeting the wild type. This phenotype was due to roughly one-third of TgOTUD3A-knockout (TgOTUD3A-KO) tachyzoites exhibiting deviations from endodyogeny …


Cerebral Amyloid Angiopathy In Down Syndrome And Sporadic And Autosomal-Dominant Alzheimer's Disease, María Carmona-Iragui, Mircea Balasa, Bessy Benejam, Daniel Alcolea, Susana Fernández, Laura Videla, Isabel Sala, María Belén Sánchez-Saudinós, Estrella Morenas-Rodriguez, Roser Ribosa-Nogué, Ignacio Illán-Gala, Sofía Gonzalez-Ortiz, Jordi Clarimón, Frederick A. Schmitt, David K. Powell, Beatriz Bosch, Albert Lladó, Michael S. Rafii, Elizabeth Head, José Luis Molinuevo, Rafael Blesa, Sebastián Videla, Alberto Lleó, Raquel Sánchez-Valle, Juan Fortea Nov 2017

Cerebral Amyloid Angiopathy In Down Syndrome And Sporadic And Autosomal-Dominant Alzheimer's Disease, María Carmona-Iragui, Mircea Balasa, Bessy Benejam, Daniel Alcolea, Susana Fernández, Laura Videla, Isabel Sala, María Belén Sánchez-Saudinós, Estrella Morenas-Rodriguez, Roser Ribosa-Nogué, Ignacio Illán-Gala, Sofía Gonzalez-Ortiz, Jordi Clarimón, Frederick A. Schmitt, David K. Powell, Beatriz Bosch, Albert Lladó, Michael S. Rafii, Elizabeth Head, José Luis Molinuevo, Rafael Blesa, Sebastián Videla, Alberto Lleó, Raquel Sánchez-Valle, Juan Fortea

Sanders-Brown Center on Aging Faculty Publications

Introduction—We aimed to investigate if cerebral amyloid angiopathy (CAA) is more frequent in genetically determined than in sporadic early-onset forms of Alzheimer's disease (AD) (early-onset AD [EOAD]).

Methods—Neuroimaging features of CAA, APOE, and cerebrospinal fluid-Aβ40 levels were studied in subjects with Down syndrome (DS, n = 117), autosomal-dominant AD (ADAD, n = 29), sporadic EOAD (n = 42), and healthy controls (n = 68).

Results—CAA was present in 31%, 38%, and 12% of cognitively impaired DS, symptomatic ADAD, and sporadic EOAD subjects and in 13% and 4% of cognitively unimpaired DS individuals and healthy controls, respectively. …


Epigenetic Impact Of Endocrine Disrupting Chemicals On Lipid Homeostasis And Atherosclerosis: A Pregnane X Receptor-Centric View, Robert N. Helsley, Changcheng Zhou Oct 2017

Epigenetic Impact Of Endocrine Disrupting Chemicals On Lipid Homeostasis And Atherosclerosis: A Pregnane X Receptor-Centric View, Robert N. Helsley, Changcheng Zhou

Pharmacology and Nutritional Sciences Faculty Publications

Despite the major advances in developing diagnostic techniques and effective treatments, atherosclerotic cardiovascular disease (CVD) is still the leading cause of mortality and morbidity worldwide. While considerable progress has been achieved to identify gene variations and environmental factors that contribute to CVD, much less is known about the role of “gene–environment interactions” in predisposing individuals to CVD. Our chemical environment has significantly changed in the last few decades, and there are more than 100,000 synthetic chemicals in the market. Recent large-scale human population studies have associated exposure to certain chemicals including many endocrine disrupting chemicals (EDCs) with increased CVD risk, …


Hne-Modified Proteins In Down Syndrome: Involvement In Development Of Alzheimer Disease Neuropathology, Eugenio Barone, Elizabeth Head, D. Allan Butterfield, Marzia Perluigi Oct 2017

Hne-Modified Proteins In Down Syndrome: Involvement In Development Of Alzheimer Disease Neuropathology, Eugenio Barone, Elizabeth Head, D. Allan Butterfield, Marzia Perluigi

Sanders-Brown Center on Aging Faculty Publications

Down syndrome (DS), trisomy of chromosome 21, is the most common genetic form of intellectual disability. The neuropathology of DS involves multiple molecular mechanisms, similar to AD, including the deposition of beta-amyloid (Aβ) into senile plaques and tau hyperphosphorylating in neurofibrillary tangles. Interestingly, many genes encoded by chromosome 21, in addition to being primarily linked to amyloid-beta peptide (Aβ) pathology, are responsible for increased oxidative stress (OS) conditions that also result as a consequence of reduced antioxidant system efficiency. However, redox homeostasis is disturbed by overproduction of Aβ, which accumulates into plaques across the lifespan in DS as well as …


Mutsβ Abundance And Msh3 Atp Hydrolysis Activity Are Important Drivers Of Ctg•Cag Repeat Expansions, Norma Keogh, Kara Y. Chan, Guo-Min Li, Robert S. Lahue Sep 2017

Mutsβ Abundance And Msh3 Atp Hydrolysis Activity Are Important Drivers Of Ctg•Cag Repeat Expansions, Norma Keogh, Kara Y. Chan, Guo-Min Li, Robert S. Lahue

Toxicology and Cancer Biology Faculty Publications

CTG•CAG repeat expansions cause at least twelve inherited neurological diseases. Expansions require the presence, not the absence, of the mismatch repair protein MutSβ (Msh2-Msh3 heterodimer). To evaluate properties of MutSβ that drive expansions, previous studies have tested under-expression, ATPase function or polymorphic variants of Msh2 and Msh3, but in disparate experimental systems. Additionally, some variants destabilize MutSβ, potentially masking the effects of biochemical alterations of the variations. Here, human Msh3 was mutated to selectively inactivate MutSβ. Msh3−/− cells are severely defective for CTG•CAG repeat expansions but show full activity on contractions. Msh3−/− cells provide a single, isogenic system …


Clinical And Experimental Studies Of A Novel P525r Fus Mutation In Amyotrophic Lateral Sclerosis, Lisha Kuang, Marisa Kamelgarn, Alexandra Arenas, Jozsef Gal, Deborah Taylor, Weiming Gong, Martin Brown, Daret St. Clair, Edward J. Kasarskis, Haining Zhu Aug 2017

Clinical And Experimental Studies Of A Novel P525r Fus Mutation In Amyotrophic Lateral Sclerosis, Lisha Kuang, Marisa Kamelgarn, Alexandra Arenas, Jozsef Gal, Deborah Taylor, Weiming Gong, Martin Brown, Daret St. Clair, Edward J. Kasarskis, Haining Zhu

Molecular and Cellular Biochemistry Faculty Publications

Objective: To describe the clinical features of a novel fused in sarcoma (FUS) mutation in a young adult female amyotrophic lateral sclerosis (ALS) patient with rapid progression of weakness and to experimentally validate the consequences of the P525R mutation in cellular neuronal models.

Methods: We conducted sequencing of genomic DNA from the index patient and her family members. Immunocytochemistry was performed in various cellular models to determine whether the newly identified P525R mutant FUS protein accumulated in cytoplasmic inclusions. Clinical features of the index patient were compared with 19 other patients with ALS carrying the P525L mutation in the same …


The Feoabc Locus Of Yersinia Pestis Likely Has Two Promoters Causing Unique Iron Regulation, Lauren O'Connor, Jacqueline D. Fetherston, Robert D. Perry Jul 2017

The Feoabc Locus Of Yersinia Pestis Likely Has Two Promoters Causing Unique Iron Regulation, Lauren O'Connor, Jacqueline D. Fetherston, Robert D. Perry

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The FeoABC ferrous transporter is a wide-spread bacterial system. While the feoABC locus is regulated by a number of factors in the bacteria studied, we have previously found that regulation of feoABC in Yersinia pestis appears to be unique. None of the non-iron responsive transcriptional regulators that control expression of feoABC in other bacteria do so in Y. pestis. Another unique factor is the iron and Fur regulation of the Y. pestis feoABC locus occurs during microaerobic but not aerobic growth. Here we show that this unique iron-regulation is not due to a unique aspect of the Y. pestis …


Crystal Structure Of Yersinia Pestis Virulence Factor Yfea Reveals Two Polyspecific Metal-Binding Sites, Christopher D. Radka, Lawrence J. Delucas, Landon S. Wilson, Matthew B. Lawrenz, Robert D. Perry, Stephen G. Aller Jul 2017

Crystal Structure Of Yersinia Pestis Virulence Factor Yfea Reveals Two Polyspecific Metal-Binding Sites, Christopher D. Radka, Lawrence J. Delucas, Landon S. Wilson, Matthew B. Lawrenz, Robert D. Perry, Stephen G. Aller

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. In Yersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that …


Zinc Transporters Ybtx And Znuabc Are Required For The Virulence Of Yersinia Pestis In Bubonic And Pneumonic Plague In Mice, Alexander G. Bobrov, Olga Kirillina, Marina Y. Fosso, Jacqueline D. Fetherston, M. Clarke Miller, Tiva T. Vancleave, Joseph A. Burlison, William K. Arnold, Matthew B. Lawrenz, Sylvie Garneau-Tsodikova, Robert D. Perry Jun 2017

Zinc Transporters Ybtx And Znuabc Are Required For The Virulence Of Yersinia Pestis In Bubonic And Pneumonic Plague In Mice, Alexander G. Bobrov, Olga Kirillina, Marina Y. Fosso, Jacqueline D. Fetherston, M. Clarke Miller, Tiva T. Vancleave, Joseph A. Burlison, William K. Arnold, Matthew B. Lawrenz, Sylvie Garneau-Tsodikova, Robert D. Perry

Microbiology, Immunology, and Molecular Genetics Faculty Publications

A number of bacterial pathogens require the ZnuABC Zinc (Zn2+) transporter and/or a second Zn2+ transport system to overcome Zn2+ sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn2+ transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn2+ transport system. Here we demonstrate that a ybtX znu double mutant is essentially avirulent in mouse models of bubonic and pneumonic …


Genome- And Cd4+ T-Cell Methylome-Wide Association Study Of Circulating Trimethylamine-N-Oxide In The Genetics Of Lipid Lowering Drugs And Diet Network (Goldn), Stella Aslibekyan, Marguerite R. Irvin, Bertha A. Hidalgo, Rodney T. Perry, Elias J. Jeyarajah, Erwin Garcia, Irina Shalaurova, Paul N. Hopkins, Michael A. Province, Hemant K. Tiwari, Jose M. Ordovas, Devin M. Absher, Donna K. Arnett Jun 2017

Genome- And Cd4+ T-Cell Methylome-Wide Association Study Of Circulating Trimethylamine-N-Oxide In The Genetics Of Lipid Lowering Drugs And Diet Network (Goldn), Stella Aslibekyan, Marguerite R. Irvin, Bertha A. Hidalgo, Rodney T. Perry, Elias J. Jeyarajah, Erwin Garcia, Irina Shalaurova, Paul N. Hopkins, Michael A. Province, Hemant K. Tiwari, Jose M. Ordovas, Devin M. Absher, Donna K. Arnett

Epidemiology and Environmental Health Faculty Publications

Background: Trimethylamine-N-oxide (TMAO), an atherogenic metabolite species, has emerged as a possible new risk factor for cardiovascular disease. Animal studies have shown that circulating TMAO levels are regulated by genetic and environmental factors. However, large-scale human studies have failed to replicate the observed genetic associations, and epigenetic factors such as DNA methylation have never been examined in relation to TMAO levels.

Methods and results: We used data from the family-based Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) to investigate the heritable determinants of plasma TMAO in humans. TMAO was not associated with other plasma markers of cardiovascular disease, …