Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Genetics and Genomics

You Are What You Eat — Exploring The Microbiome Through Inquiry-Based Labs. Microbiome Lesson Plans, Karla S. Fuller Aug 2021

You Are What You Eat — Exploring The Microbiome Through Inquiry-Based Labs. Microbiome Lesson Plans, Karla S. Fuller

Open Educational Resources

If these commonly used spices have the ability to inhibit pathogenic bacterial growth, could they also potentially inhibit the growth of normal, harmless bacteria that live in your body? In this lab, we will test common bacteria for resistance to food additives.


Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky Aug 2021

Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky

Open Educational Resources

The goal of this preparatory textbook is to give students a chance to become familiar with some terms and some basic concepts they will find later on in the Anatomy and Physiology course, especially during the first few weeks of the course.

Organization and functioning of the human organism are generally presented starting from the simplest building blocks, and then moving into levels of increasing complexity. This textbook follows the same presentation. It begins introducing the concept of homeostasis, then covers the chemical level, and later on a basic introduction to cellular level, organ level, and organ system level. This …


Improved Evidence-Based Genome-Scale Metabolic Models For Maize Leaf, Embryo, And Endosperm, Samuel M. D. Seaver, Louis M. T. Bradbury, Océane Frelin, Raphy Zarecki, Eytan Ruppin, Andrew D. Hanson, Christopher S. Henry Mar 2015

Improved Evidence-Based Genome-Scale Metabolic Models For Maize Leaf, Embryo, And Endosperm, Samuel M. D. Seaver, Louis M. T. Bradbury, Océane Frelin, Raphy Zarecki, Eytan Ruppin, Andrew D. Hanson, Christopher S. Henry

Publications and Research

There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and …