Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Genetics and Genomics

The Role And Regulation Of The Caudal Gene In Tribolium Castaneum Segmentation, Suzanne Nicole Carpe Elias Apr 2022

The Role And Regulation Of The Caudal Gene In Tribolium Castaneum Segmentation, Suzanne Nicole Carpe Elias

Senior Theses and Projects

The embryo of the red flour beetle Tribolium castaneum develops sequentially by adding segments in an anterior-to-posterior progression using a “clock”-like mechanism similar to that of vertebrates. Previous studies indicate that the oscillations of this segmentation clock are driven by a gradient of the transcription factor caudal (cad), which activates and regulates the clock. Knocking down the cad gene using parental or early embryonic RNAi leads to animals with only head segments. We hypothesized that progressively later embryonic knockdowns would produce animals with progressively more segments if the function of cad does not change during segmentation. To examine …


Investigating Notch Signaling And Sequential Segmentation In The Fairy Shrimp, Thamnocephalus Platyurus, Sara Izzat Khalil Apr 2015

Investigating Notch Signaling And Sequential Segmentation In The Fairy Shrimp, Thamnocephalus Platyurus, Sara Izzat Khalil

Senior Theses and Projects

Segmentation is a key feature of arthropod diversity and evolution. In the standard model for arthropod development, Drosophila melanogaster, segments develop simultaneously by a progressive subdivision of the embryo. By contrast, most arthropods add segments sequentially from a posterior region called the growth zone and in a manner similar to vertebrates.

Recent work, mainly focused on insects, suggests that Notch signaling might play a role in arthropods that segment sequentially. These studies document a potential regulatory similarity between sequentially segmenting arthropods and vertebrates. In vertebrates, somite formation involves a molecular oscillator that functions as a pacemaker, driving periodic expression …