Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Genetics and Genomics

What I Talk About When I Talk About Integration Of Single-Cell Data, Yang Xu Aug 2022

What I Talk About When I Talk About Integration Of Single-Cell Data, Yang Xu

Doctoral Dissertations

Over the past decade, single-cell technologies evolved from profiling hundreds of cells to millions of cells, and emerged from a single modality of data to cover multiple views at single-cell resolution, including genome, epigenome, transcriptome, and so on. With advance of these single-cell technologies, the booming of multimodal single-cell data creates a valuable resource for us to understand cellular heterogeneity and molecular mechanism at a comprehensive level. However, the large-scale multimodal single-cell data also presents a huge computational challenge for insightful integrative analysis. Here, I will lay out problems in data integration that single-cell research community is interested in and …


Genome Evolution In The Salicaceae: Genetic Novelty, Horizontal Gene Transfer, And Comparative Genomics, Timothy Yates Aug 2022

Genome Evolution In The Salicaceae: Genetic Novelty, Horizontal Gene Transfer, And Comparative Genomics, Timothy Yates

Doctoral Dissertations

Genome evolution is a powerful force which shapes genomes over time through processes like mutation, horizontal transfer, and sexual reproduction. Although questions which aim to explore genome evolution are broad, they are all understood through the discovery and comparison of genetic variation. For example, genetic diversity may explain differences in phenotypes, etiology of disease, and is essential for phylogenomic analysis. Recently, the democratization of next generation and third generation DNA sequencing technologies have allowed for genomics to produce large amounts of sequence data. This has facilitated the capture of genetic variation at species and population scales.

Populus and Salix are …


Mechanisms By Which Xenorhabdus Nematophila Interacts With Hosts Using Integrated -Omics Approaches, Nicholas C. Mucci May 2022

Mechanisms By Which Xenorhabdus Nematophila Interacts With Hosts Using Integrated -Omics Approaches, Nicholas C. Mucci

Doctoral Dissertations

Nearly all organisms exist in proximity to microbes. These microbes perform most of the essential metabolic processes necessary for homeostasis, forming the nearly hidden support system of Earth. Microbial symbiosis, which is defined as the long-term physical association between host and microbes, relies on communication between the microbial community and their host organism. These interactions among higher order organisms (such as animals, plants, and fungi) and their bacteria links metabolic processes between interkingdom consortia. Many questions on microbial behavior within a host remain poorly understood, such as the colonization efficiency among different microbial species, or how environmental context changes their …


Multi-Omic Systems Biological Analysis Of Host-Microbe Interactions, Piet Jones May 2022

Multi-Omic Systems Biological Analysis Of Host-Microbe Interactions, Piet Jones

Doctoral Dissertations

Systems biology offers the opportunity to understand the complex mechanisms of various biological phenomena. The wealth of data that is produced, at an increasing rate, provides the potential to meet this opportunity. Here we take an applied approach to integrate multiple omic level data sources in order to generate biologically relevant hypotheses. We apply a novel analysis pipeline to model both, in concert, the microbial and transcriptomic signature from COVID-19 positive patients. We show patients may suffer from an increased microbial burden, with an increased pathogen potential. Gene expression evidence further shows patients may exhibit a compromised barrier immunity, owing …


Genetic And Environmental Regulation Of Plant Growth, Kirk J-M Mackinnon Feb 2022

Genetic And Environmental Regulation Of Plant Growth, Kirk J-M Mackinnon

Doctoral Dissertations

Field grown crops are continually exposed to a variety of external stimuli that influence plant responses. Light, temperature, and water availability interact to affect many economically important traits including growth rate, size, and lifespan. My research is focused on the intersection of genetic and environmental factors influencing plant growth. Specifically, I am interested in elucidating the regulation of rhythmic genes in response to photo- and thermocycles and identifying novel candidate genes associated with growth and drought traits. Understanding the gene regulatory networks that mediate time-of-day signaling is vital to identifying candidate genes across the pan-genome associated with traits of interest.


Mapping Selected Polyphenols Metabolism By Gut Bacteria And Their Genes, Ermin Zhao Feb 2022

Mapping Selected Polyphenols Metabolism By Gut Bacteria And Their Genes, Ermin Zhao

Doctoral Dissertations

The human gut microbiome is a huge enzyme repository for dietary polyphenols metabolism, especially considering most of the polyphenols cannot be digested in the host and their biological functions are limited. Poor bioaccessibility based on traditional pharmaceutical ADME (absorption, distribution, metabolism, and excretion) assessment is the main problem facing the widely medical application of most polyphenols. Gut bacteria have the potential to mediate a wide range of biotransformation reactions of polyphenols, which leads to the production of many bioactive metabolites. In the past decades, mounting evidence in traditional ADME study have demonstrated gut bacteria play an irreplaceable role in dietary …