Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Genetics and Genomics

Orthologs Of The C. Elegans Heterochronic Genes Have Divergent Functions In C. Briggsae, Maria Ivanova, Eric G. Moss May 2023

Orthologs Of The C. Elegans Heterochronic Genes Have Divergent Functions In C. Briggsae, Maria Ivanova, Eric G. Moss

Rowan-Virtua Research Day

The heterochronic genes of C. elegans comprise the best-studied pathway controlling the timing of tissue and organ formation in an animal. To begin to understand the evolution of this pathway, the significance of each factor, and the relationships among the components, we characterized 11 C. briggsae orthologs of C. elegans heterochronic genes. Using CRISPR/Cas9, we made a variety of alleles and found that several mutant phenotypes differ in significant ways from those of C. elegans. Although most orthologs displayed defects in developmental timing, those phenotypes could differ in which stages they controlled, the penetrance and expressivity of the phenotypes, or …


Gonads Without Glp-1: Silencing Glp-1 In The Male Somatic Gonad In Caenorhabditis Elegans, Matthew Titus Apr 2023

Gonads Without Glp-1: Silencing Glp-1 In The Male Somatic Gonad In Caenorhabditis Elegans, Matthew Titus

Undergraduate Theses

In C. elegans, the gene glp-1 encodes for a Notch receptor called GLP-1, one of two found in C. elegans’ genome. The gene has been previously implicated in the development of the hermaphroditic germline as well as playing a role in the mitosis/meiosis decision. Genetic screening has further identified it as potentially playing a role in the development of the male somatic gonad, making it an ideal candidate for a reverse genetic. We did this by silencing glp-1 and observing if any alterations to the gonad’s phenotype occur.

Normally this could be done by performing a gene knockout. …


Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo Aug 2022

Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo

Graduate School of Biomedical Sciences Theses and Dissertations

In Caenorhabditis elegans, the heterochronic pathway is comprised of a hierarchy of genes that control the proper timing of developmental events. hbl-1 (Hunchback Like-1) encodes an Ikaros family zinc-finger transcription factor that promotes the L2 stage cell fate events of the hypodermis. The downregulation ofhbl-1 is a crucial step for the transition from the L2 to the L3 stage. There are two known processes through which negative regulation of hbl-1 occurs: suppression of hbl-1 expression by 3 let-7 miRNAs through the hbl-1 3’UTR and inhibition of HBL-1 activity by LIN-46. The mechanisms by which hbl-1 is positively regulated have not …


Analyzing The Effect Of Apoptotic Mutations On The State Of The Nascent-Polypeptide Associated Complex In Caenorhabditis Elegans, Monica Gerber May 2019

Analyzing The Effect Of Apoptotic Mutations On The State Of The Nascent-Polypeptide Associated Complex In Caenorhabditis Elegans, Monica Gerber

Senior Honors Projects, 2010-2019

Cells experiencing misfolded protein stress can become debilitated and die, contributing to the onset of disease. The nascent polypeptide-associated complex (NAC) is a heterodimeric translational chaperone that protects against misfolded protein stress by mediating proper protein folding and localization during translation. Depletion of this complex results in misfolded protein accumulation in the endoplasmic reticulum (ER). To determine the importance of the NAC to proteostasis, we have previously depleted the complex in C.elegans via RNA interference and observed numerous dose-dependent effects, including apoptosis of neuronal cells and changes in gene expression of hypodermal cells. While we have observed these cell-specific responses …


Times Of Action And Evolutionary Conservation Of Heterochronic Genes, Maria Ivanova, Eric G. Moss May 2019

Times Of Action And Evolutionary Conservation Of Heterochronic Genes, Maria Ivanova, Eric G. Moss

Rowan-Virtua Research Day

Specific genes called heterochronic genes control the timing and sequence of developmental events during larval stages of C. elegans. Mutations in heterochronic genes can cause skipping or reiteration of cell fates associated with certain larval stages. lin-14 and lin-28 are two well-studied heterochronic genes. LIN-14 acts during the first larval stage (L1) and controls events of the L1 and L2 stages, LIN-28 acts during the L2 stage and controls its events.


Platiscity Of C. Elegans Germline Stem Cells Under Nutritional And Metabolic Stress, Kenneth Trimmer May 2019

Platiscity Of C. Elegans Germline Stem Cells Under Nutritional And Metabolic Stress, Kenneth Trimmer

Dissertations & Theses (Open Access)

Stem cells are integral for tissue maintenance and fertility. Therefore, understanding how stem cells are regulated under stress is imperative. When confronted with acute starvation, stem cells must conserve energy and metabolites to cope with the lack of an external source. Caenorhabditis elegans germline stem cells (GSCs) are an excellent model for studying stem cell properties and regulation as they can divide throughout the life of the organism. While GSCs are an adult stem cell population, their cell cycle structure more closely mimics mouse and human embryonic stem cells with short G1 and long S phases. In this thesis, I …


Integration Of Bmp And Insulin/Igf-1 Signaling Regulates Multiple Homeostatic Functions In Caenorhabditis Elegans, James F. Clark Sep 2018

Integration Of Bmp And Insulin/Igf-1 Signaling Regulates Multiple Homeostatic Functions In Caenorhabditis Elegans, James F. Clark

Dissertations, Theses, and Capstone Projects

The maintenance of homeostatic functions is key to the survival and well-being of an organism. Regulation of homeostasis relies on varied inputs, both intrinsic and extrinsic, to potentiate a web of interconnected signaling relays. Insulin/IGF-1 signaling (IIS) is a well-known regulator of glucose and lipid metabolism, as well as having far reaching effects in other homeostatic mechanisms. On the other hand, bone morphogenetic protein (BMP), a member of the transforming growth factor beta signaling superfamily, is known for its role in differentiation and development, with only recent studies highlighting potential roles in metabolic homeostasis. Here we elucidate new functions for …


Role Of Bec-1/Beclin 1 And Autophagy Genes In C.Elegans Germline Cell Proliferation, Kristina Ames Feb 2016

Role Of Bec-1/Beclin 1 And Autophagy Genes In C.Elegans Germline Cell Proliferation, Kristina Ames

Dissertations, Theses, and Capstone Projects

Autophagy is an evolutionary conserved process involved in the cellular adaptation to stress and basal levels of autophagy are crucial for cellular metabolism and homeostasis. Cellular recycling by autophagy is characterized by the formation of distinctive double-membrane vesicles (autophagosomes) that engulf unnecessary cytoplasmic components, such as organelles and long-lived proteins. Failure to remove protein aggregates and/or damaged organelles, via autophagy, has been implicated in various medical conditions such as liver disease, neurodegenerative diseases and cancer. Autophagy may suppress or promote cellular proliferation in tumors, depending on the type and metabolic state of the cell, where autophagy is generally believed to …


Reactive Oxygen Species-Mediated Neurodegeneration Is Independent Of The Ryanodine Receptor In Caenorhabditis Elegans, Lyndsay E.A. Young, Daniel C. Williams Oct 2015

Reactive Oxygen Species-Mediated Neurodegeneration Is Independent Of The Ryanodine Receptor In Caenorhabditis Elegans, Lyndsay E.A. Young, Daniel C. Williams

Journal of the South Carolina Academy of Science

Despite the significant impacts on human health caused by neurodegeneration, our understanding of the degeneration process is incomplete. The nematode Caenorhabditis elegans is emerging as a genetic model organism well suited for identification of conserved cellular mechanisms and molecular pathways of neurodegeneration. Studies in the worm have identified factors that contribute to neurodegeneration, including excitotoxicity and stress due to reactive oxygen species (ROS). Disruption of the gene unc-68, which encodes the ryanodine receptor, abolishes excitotoxic cell death, indicating a role for calcium (Ca2+) signaling in neurodegeneration. We tested the requirement for unc-68 in ROS-mediated neurodegeneration using the …


Sirt1 Regulation Of The Heat Shock Response In An Hsf1-Dependent Manner And The Impact Of Caloric Restriction, Rachel Rene Raynes Jan 2013

Sirt1 Regulation Of The Heat Shock Response In An Hsf1-Dependent Manner And The Impact Of Caloric Restriction, Rachel Rene Raynes

USF Tampa Graduate Theses and Dissertations

The heat shock response (HSR) is the cell's molecular reaction to protein damaging stress and is critical in the management of denatured proteins. Activation of HSF1, the master transcriptional regulator of the HSR, results in the induction of molecular chaperones called heat shock proteins (HSPs). Transcription of hsp genes is promoted by the hyperphosphorylation of HSF1, while the attenuation of the HSR is regulated by a dual mechanism involving negative feedback inhibition from HSPs and acetylation at a critical lysine residue within the DNA binding domain of HSF1, which results in a loss of affinity for DNA. SIRT1 is a …


Structural And Functional Evaluation Of C. Elegans Filamins Fln-1 And Fln-2, Christina R. Demaso, Ismar Kovacevic, Alper Uzun, Erin J. Cram Sep 2011

Structural And Functional Evaluation Of C. Elegans Filamins Fln-1 And Fln-2, Christina R. Demaso, Ismar Kovacevic, Alper Uzun, Erin J. Cram

Erin Cram

Filamins are long, flexible, multi-domain proteins composed of an N-terminal actin-binding domain (ABD) followed by multiple immunoglobulin-like repeats (IgFLN). They function to organize and maintain the actin cytoskeleton, to provide scaffolds for signaling components, and to act as mechanical force sensors. In this study, we used transcript sequencing and homology modeling to characterize the gene and protein structures of the C. elegans filamin orthologs fln-1 and fln-2. Our results reveal that C. elegans FLN-1 is well conserved at the sequence level to vertebrate filamins, particularly in the ABD and several key IgFLN repeats. Both FLN-1 and the more divergent FLN-2 …