Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Genetics and Genomics

Unseen Science: Modern Discoveries Too Far Away Or Tiny For Human Eyes, Lucy Huang Dec 2017

Unseen Science: Modern Discoveries Too Far Away Or Tiny For Human Eyes, Lucy Huang

Capstones

As science has progressed, scientists have realized that evidence goes beyond the realms of physical sight. Whether it is too small or difficult to find, scientists have developed different ways to get around this problem. We see this in cancer genomics and in extrasolar planetary research. Scientists use what they know and what they measure to validate their work.

https://lucy-huang-9tge.squarespace.com/


The Role Of T-Box Proteins In Vertebrate Germ Layer Formation And Patterning, Sushma Teegala Sep 2017

The Role Of T-Box Proteins In Vertebrate Germ Layer Formation And Patterning, Sushma Teegala

Dissertations, Theses, and Capstone Projects

All of the tissues in triploblastic organisms, with the exception of the germ cells, arise from the three germ layers, ectoderm, mesoderm and the endoderm. The identification of the genes that underlie the differentiation of these layers is crucial to our understanding of development. T-box family proteins are DNA-binding transcriptional regulators that play important roles during germ layer formation in the early vertebrate embryo. Well-characterized members of this family, including the transcriptional activators Brachyury and VegT, are essential for the proper formation of mesoderm and endoderm, respectively. To date, T-box proteins have not been shown to play a role in …


Optimizing A Method For Simultaneous Recovery Of Proteins And Dna From Fingerprints, Steven Kranes Aug 2017

Optimizing A Method For Simultaneous Recovery Of Proteins And Dna From Fingerprints, Steven Kranes

Student Theses

DNA testing on touched objects is a valuable tool in forensic investigations, but DNA is usually present in low amounts, causing poor STR typing results. For touch DNA evidence, there is a clear need for additional individualization, especially for highly probative samples. This could be achieved by testing genetically variable proteins. The goal of this project was to develop a DNA/protein co-extraction method to facilitate DNA and protein testing on the same evidence item. Existing DNA extraction methods were carefully adjusted to allow for downstream mass spectrometry analysis. Initial experiments on saliva and fingerprints placed on glass suggested that trypsin …


The Recycling Gtpase, Rab-10, Regulates Autophagy Flux In Caenorhabditis Elegans, Nicholas J. Palmisano Jun 2017

The Recycling Gtpase, Rab-10, Regulates Autophagy Flux In Caenorhabditis Elegans, Nicholas J. Palmisano

Dissertations, Theses, and Capstone Projects

Autophagy and endocytosis are two cellular pathways that are vital to cell growth and homeostasis. Autophagy is a dynamic and catabolic process involving the formation of a double-membrane vesicle called the autophagosome, which engulfs long-lived proteins and damaged organelles. Endocytosis involves the uptake of extracellular material into the cell through the formation of intracellular vesicles termed endosomes. Although both endocytosis and autophagy are interconnected processes, the extent to which endocytic proteins and/or compartments contribute to autophagy, and how these endocytic components do so, is still unknown. To improve our understanding of the connections that exist between autophagy and endocytosis, we …


Body Size Regulation Via Bmp Signaling In Caenorhabditis Elegans, Uday Madaan Jun 2017

Body Size Regulation Via Bmp Signaling In Caenorhabditis Elegans, Uday Madaan

Dissertations, Theses, and Capstone Projects

The body size of an organism can be a crucial determinant of access to nutrition, reproductive success and overall survival in the wild. However, how body size of an individual is determined is incompletely understood. Body size is a complex trait determined by multiple pathways and genes, making it difficult to understand the role of individual genes and pathways in determining overall size. In Caenorhabditis elegans, a homolog of Bone Morphogenetic Proteins (BMP) is a major regulator of body size; functional loss of DBL-1 leads to a small body size. Due to a drastic change in body size in dbl-1 …


Mutant Tdp-43 Does Not Impair Mitochondrial Bioenergetics In Vitro And In Viv, Hibiki Kawamata, Pablo Peixoto, Csaba Konrad, Gloria Palomo, Kirsten Bredvik, Meri Gerges, Federica Valsecchi, Leonard Petrucelli, John M. Ravits, Anatoly Starkov, Giovanni Manfredi May 2017

Mutant Tdp-43 Does Not Impair Mitochondrial Bioenergetics In Vitro And In Viv, Hibiki Kawamata, Pablo Peixoto, Csaba Konrad, Gloria Palomo, Kirsten Bredvik, Meri Gerges, Federica Valsecchi, Leonard Petrucelli, John M. Ravits, Anatoly Starkov, Giovanni Manfredi

Publications and Research

Background: Mitochondrial dysfunction has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Functional studies of mitochondrial bioenergetics have focused mostly on superoxide dismutase 1 (SOD1) mutants, and showed that mutant human SOD1 impairs mitochondrial oxidative phosphorylation, calcium homeostasis, and dynamics. However, recent reports have indicated that alterations in transactivation response element DNA-binding protein 43 (TDP-43) can also lead to defects of mitochondrial morphology and dynamics. Furthermore, it was proposed that TDP-43 mutations cause oxidative phosphorylation impairment associated with respiratory chain defects and that these effects were caused by mitochondrial localization of the mutant …


Post-Transcriptional Regulation Of The Drosophila Anterior Determinant, Bicoid, John Mclaughlin Feb 2017

Post-Transcriptional Regulation Of The Drosophila Anterior Determinant, Bicoid, John Mclaughlin

Dissertations, Theses, and Capstone Projects

In a wide variety of biological contexts, messenger RNA (mRNA) is known to have a complex and dynamic life cycle. In particular, the localization and translational control of mRNA are essential for proper development in eukaryotes. The fly Drosophila melanogaster is an excellent model for studying these processes. During D. melanogaster oogenesis, several mRNAs are trafficked and localized within the developing egg chamber, and regulated at the translational level to enable embryo patterning. One such mRNA, bicoid, is localized at the anterior of the oocyte and translated in the early embryo, where its encoded protein directs formation of the fly's …


Transcriptional And Post-Transcriptional Regulation Of Histone Variant H2a.Z During Sea Urchin Development, Mihai Hajdu Feb 2017

Transcriptional And Post-Transcriptional Regulation Of Histone Variant H2a.Z During Sea Urchin Development, Mihai Hajdu

Dissertations, Theses, and Capstone Projects

Histone variant H2A.Z promotes chromatin accessibility at transcriptional regulatory elements and is developmentally regulated in metazoans. We characterize the transcriptional and post-transcriptional regulation of H2A.Z in the purple sea urchin Strongylocentrotus purpuratus. H2A.Z depletion by antisense translation-blocking morpholino oligonucleotides during early development causes developmental collapse, in agreement with its previously demonstrated general role in transcriptional multipotency. During H2A.Z peak expression in 24-h embryos, endogenous H2A.Z 3’ UTR sequences stabilize GFP mRNAs relative to those with SV40 3’ UTR sequences, although the 3’UTR of H2A.Z does not determine the spatial distribution of H2A.Z transcripts during embryonic and postembryonic development. We …


Environmental Changes Turn On The Sinorhizobium Melitloti Exor-Exos/Chvi (Rsi) Host Invasion Switch, Shari N. Walcott Feb 2017

Environmental Changes Turn On The Sinorhizobium Melitloti Exor-Exos/Chvi (Rsi) Host Invasion Switch, Shari N. Walcott

Dissertations, Theses, and Capstone Projects

The free-living Gram-negative soil bacterium, Sinorhizobium meliloti, must switch into its host-invading form in order to infect the root hairs of the host plant, alfalfa (Medicago sativa), and establish a nitrogen-fixing symbiosis. The activation of the switch is believed to occur inside the infection chamber that is formed by curling of the root hairs. It is not fully understood what signals in the environment of the root hairs trigger and infection chamber S. meliloti to switch into a host-invading form since these signals were not extensively examined until now. This switch can be observed directly, due to …