Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Genetics and Genomics

Optimization Of A Genomic Editing System Using Crispr/Cas9-Induced Site-Specific Gene Integration, Jillian L. Mccool Ms., Nick Hum, Gabriela G. Loots Aug 2016

Optimization Of A Genomic Editing System Using Crispr/Cas9-Induced Site-Specific Gene Integration, Jillian L. Mccool Ms., Nick Hum, Gabriela G. Loots

STAR Program Research Presentations

The CRISPR-Cas system is an adaptive immune system found in bacteria which helps protect against the invasion of other microorganisms. This system induces double stranded breaks at precise genomic loci (1) in which repairs are initiated and insertions of a target are completed in the process. This mechanism can be used in eukaryotic cells in combination with sgRNAs (1) as a tool for genome editing. By using this CRISPR-Cas system, in addition to the “safe harbor locus,” ROSAβ26, the incorporation of a target gene into a site that is not susceptible to gene silencing effects can be achieved through few …


The Effect Of Transformed Escherichia Coli On The Mouse Intestine Microbiome: The Microbial Metabolic Enhancement Hypothesis, Bryar P. Kader May 2016

The Effect Of Transformed Escherichia Coli On The Mouse Intestine Microbiome: The Microbial Metabolic Enhancement Hypothesis, Bryar P. Kader

Senior Honors Theses

Metabolic disorders affect around thirty-four percent of the population in the United States. Among these disorders is lactose intolerance, which results from diminished production of the human lactase enzyme. This disorder and others like it are genetically determined and cannot be cured. However, the use of transformed bacteria implanted in the colon may provide a means by which the faulty pathway can be bypassed. To test whether transformed bacteria have the capability to aid in the digestion of normally indigestible compounds, a transformed strain of Escherichia coli overexpressing the beta-galactosidase enzyme encoded by the lacZ gene was colonized in the …


Development Of Pyrf-Based Genetic System For Targeted Gene Deletion In Clostridium Thermocellum And Creation Of A Pta Mutant, Shital A. Tripathi, Daniel G. Olson, D. Aaron Argyros, Bethany B. Miller, Trisha F. Barrett, Daniel M. Murphy, Jesse D. Mccool, Anne K. Warner, Vineet B. Rajgarhia, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza Aug 2010

Development Of Pyrf-Based Genetic System For Targeted Gene Deletion In Clostridium Thermocellum And Creation Of A Pta Mutant, Shital A. Tripathi, Daniel G. Olson, D. Aaron Argyros, Bethany B. Miller, Trisha F. Barrett, Daniel M. Murphy, Jesse D. Mccool, Anne K. Warner, Vineet B. Rajgarhia, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza

Dartmouth Scholarship

We report development of a genetic system for making targeted gene knockouts in Clostridium thermocellum, a thermophilic anaerobic bacterium that rapidly solubilizes cellulose. A toxic uracil analog, 5-fluoroorotic acid (5-FOA), was used to select for deletion of the pyrF gene. The ΔpyrF strain is a uracil auxotroph that could be restored to a prototroph via ectopic expression of pyrF from a plasmid, providing a positive genetic selection. Furthermore, 5-FOA was used to select against plasmid-expressed pyrF, creating a negative selection for plasmid loss. This technology was used to delete a gene involved in organic acid production, namely pta, which encodes …


Metal-Resistance Genetically Engineered Bacteria, Sylvia Daunert, Donna Scott, Sridhar Ramanathan Jun 1996

Metal-Resistance Genetically Engineered Bacteria, Sylvia Daunert, Donna Scott, Sridhar Ramanathan

KWRRI Research Reports

Bacterial-based electrochemical and optical sensing systems that respond in a highly selective and sensitive manner to antimonite and arsenite have been developed. This was accomplished by using genetically engineered bacteria bearing one of two plasmids constructed for our studies. The first plasmid, pBGD23, contains the operator/promoter region (O/P) and the gene of the ArsR protein from the ars operon upstream from the β-galactosidase gene. In the absence of antimonite/arsenite, ArsR binds to the 0/P site and prevents the transcription of the genes for ArsR and β-galactosidase, thus blocking expression of these proteins. When antimonite or arsenite is present in the …