Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 62

Full-Text Articles in Genetics and Genomics

Nuclear Phylogeny And Insights Into Whole-Genome Duplications And Reproductive Development Of Solanaceae Plants, Jie Wang, Weibin Xu, Junwen Zhai, Yi Hu, Jing Guo, Caifei Zhang, Yiyong Zhao, Lin Zhang, Christopher T. Martine, Hong Ma, Chien-Hsun Huang Jan 2023

Nuclear Phylogeny And Insights Into Whole-Genome Duplications And Reproductive Development Of Solanaceae Plants, Jie Wang, Weibin Xu, Junwen Zhai, Yi Hu, Jing Guo, Caifei Zhang, Yiyong Zhao, Lin Zhang, Christopher T. Martine, Hong Ma, Chien-Hsun Huang

Faculty Journal Articles

Solanaceae, the nightshade family, have ∼2700 species, including the important crops potato and tomato, ornamentals, and medicinal plants. Several sequenced Solanaceae genomes show evidence for whole-genome duplication (WGD), providing an excellent opportunity to investigate WGD and its impacts. Here, we generated 93 transcriptomes/genomes and combined them with 87 public datasets, for a total of 180 Solanaceae species representing all four subfamilies and 14 of 15 tribes. Nearly 1700 nuclear genes from these transcriptomic/genomic datasets were used to reconstruct a highly resolved Solanaceae phylogenetic tree with six major clades. The Solanaceae tree supports four previously recognized subfamilies (Goetzeioideae, Cestroideae, Nicotianoideae, …


Insights Into The Speciation Process From Genomic And Phenotypic Analysis Of An Avian Hybrid Zone In Amazonia, Glaucia Christina Del-Rio Jul 2022

Insights Into The Speciation Process From Genomic And Phenotypic Analysis Of An Avian Hybrid Zone In Amazonia, Glaucia Christina Del-Rio

LSU Doctoral Dissertations

Understanding the outcome of secondary contact is essential to shed light on the mechanisms governing species formation and maintenance. In Amazonia, closely related bird taxa with limited dispersal abilities are often separated by rivers, which presumably act as dispersal barriers. However, at the headwaters, rivers cease to be dispersal barriers, and this generates opportunities for secondary contact. In my dissertation, I studied genomic mechanisms associated with phenotypic differences, mitochondrial DNA structure, and putative reproductive barriers between two hybridizing Amazonian bird species in the genus Rhegmatorhina, a group of antbirds that find their arthropod prey exclusively by following army-ant swarms. …


Why Sequence All Eukaryotes?, Mark Blaxter, John M. Archibald, Anna K. Childers, Jonathan A. Coddington, Keith A. Crandall, Federica Di Palma, Richard Durbin, Scott V. Edwards, Jennifer A.M. Graves, Kevin J. Hackett, Neil Hall, Erich D. Jarvis, Rebecca N. Johnson, Elinor K. Karlsson, W. John Kress, Shigehiro Kuraku, Mara K. N. Lawniczak, Kerstin Lindblad-Toh, Jose V. Lopez, Nancy A. Moran, Gene E. Robinson, Oliver A. Ryder, Beth Shapiro, Pamela S. Soltis, Tandy Warnow, Guojie Zhang, Harris A. Lewin Jan 2022

Why Sequence All Eukaryotes?, Mark Blaxter, John M. Archibald, Anna K. Childers, Jonathan A. Coddington, Keith A. Crandall, Federica Di Palma, Richard Durbin, Scott V. Edwards, Jennifer A.M. Graves, Kevin J. Hackett, Neil Hall, Erich D. Jarvis, Rebecca N. Johnson, Elinor K. Karlsson, W. John Kress, Shigehiro Kuraku, Mara K. N. Lawniczak, Kerstin Lindblad-Toh, Jose V. Lopez, Nancy A. Moran, Gene E. Robinson, Oliver A. Ryder, Beth Shapiro, Pamela S. Soltis, Tandy Warnow, Guojie Zhang, Harris A. Lewin

Biology Faculty Articles

Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes—about 2 million species—should be sequenced to high quality to produce a …


Ultracontinuous Single Haplotype Genome Assemblies For The Domestic Cat (Felis Catus) And Asian Leopard Cat (Prionailurus Bengalensis), Kevin R. Bredemeyer, Andrew J. Harris, Gang Li, Le Zhao, Nicole M. Foley, Melody E. Roelke-Parker, Stephen James O'Brien, Leslie A. Lyons, Wesley C. Warren, William J. Murphy Dec 2020

Ultracontinuous Single Haplotype Genome Assemblies For The Domestic Cat (Felis Catus) And Asian Leopard Cat (Prionailurus Bengalensis), Kevin R. Bredemeyer, Andrew J. Harris, Gang Li, Le Zhao, Nicole M. Foley, Melody E. Roelke-Parker, Stephen James O'Brien, Leslie A. Lyons, Wesley C. Warren, William J. Murphy

Biology Faculty Articles

In addition to including one of the most popular companion animals, species from the cat family Felidae serve as a powerful system for genetic analysis of inherited and infectious disease, as well as for the study of phenotypic evolution and speciation. Previous diploid-based genome assemblies for the domestic cat have served as the primary reference for genomic studies within the cat family. However, these versions suffered from poor resolution of complex and highly repetitive regions, with substantial amounts of unplaced sequence that is polymorphic or copy number variable. We sequenced the genome of a female F1 Bengal hybrid cat, the …


A Genome-Wide Assessment Of The Ancestral Neural Crest Gene Regulatory Network, Dorit Hockman, Vanessa Chong-Morrison, Stephen A. Green, Daria Gavriouchkina, Ivan Candido-Ferreira, Irving T. C. Ling, Ruth M. Williams, Chris T. Amemiya, Jeramiah J. Smith, Marianne E. Bronner, Tatjana Sauka-Spengler Oct 2019

A Genome-Wide Assessment Of The Ancestral Neural Crest Gene Regulatory Network, Dorit Hockman, Vanessa Chong-Morrison, Stephen A. Green, Daria Gavriouchkina, Ivan Candido-Ferreira, Irving T. C. Ling, Ruth M. Williams, Chris T. Amemiya, Jeramiah J. Smith, Marianne E. Bronner, Tatjana Sauka-Spengler

Biology Faculty Publications

The neural crest (NC) is an embryonic cell population that contributes to key vertebrate-specific features including the craniofacial skeleton and peripheral nervous system. Here we examine the transcriptional and epigenomic profiles of NC cells in the sea lamprey, in order to gain insight into the ancestral state of the NC gene regulatory network (GRN). Transcriptome analyses identify clusters of co-regulated genes during NC specification and migration that show high conservation across vertebrates but also identify transcription factors (TFs) and cell-adhesion molecules not previously implicated in NC migration. ATAC-seq analysis uncovers an ensemble of cis-regulatory elements, including enhancers of Tfap2B, …


Mrub_3019 Casa Gene Is An Ortholog To E. Coli B2760, Kelsey Heiland, Dr. Lori Scott Feb 2019

Mrub_3019 Casa Gene Is An Ortholog To E. Coli B2760, Kelsey Heiland, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This research is part of the Meiothermus ruber genome annotation project which aims to predict gene function with various bioinformatics tools. We investigated the function of Mrub_3019, which encodes the CasA protein involved in the multi-subunit effector complex for the CRISPR-Cas immunity system and predicted it to be an ortholog of E. coli K12 MG1655 b2760 (casA). We predicted that Mrub_3019 encodes the protein CasA, which is involved in PAM recognition of CRISPR interference pathway. Foreign DNA will bind to CasA, which signals Cas3 for helicase-mediated DNA degradation. Our hypothesis is supported by low E-values for pairwise alignment in NCBI …


Mrub_3015 Is Orthologous To The B2757 Gene Found In Escherichia Coli Coding For Casd, Ramona Collins, Dr. Lori Scott Feb 2019

Mrub_3015 Is Orthologous To The B2757 Gene Found In Escherichia Coli Coding For Casd, Ramona Collins, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We investigated the biological function of the gene Mrub_3015, which we hypothesize is a component of the CRISPR-Cas prokaryotic defense system. We predict that Mrub_3015 (DNA coordinates 3055550...3056245) encodes the the CRISPR-associated protein cas5, which is integral in maintaining the crRNA-DNA structure, keeping the complex from base pairing with the target phage DNA. Our hypothesis is supported by identical hits for Mrub_3015 and b2527 to the KEGG, Pfam, TIGRfam, CDD and PDB databases as well as a …


Mrub_3018 Is Orthologous To E. Coli B2759 (Casb), Kyle Parker, Dr. Lori Scott Feb 2019

Mrub_3018 Is Orthologous To E. Coli B2759 (Casb), Kyle Parker, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We studied the biological activity of the Mrub_3018 gene, which we hypothesize is orthologous to E. coli gene B2759. We predicted that Mrub_3018(DNA coordinates 3057916… 3058524) encodes the protein CasB. CasB is a protein in the CRISPR CASCADE that will function as a structural protein. When the rest of the proteins form an “S” formation CasB will connect the front and back of the “S” creating a back bone for the structure. It will help bind DNA …


A Chromosome-Scale Assembly Of The Axolotl Genome, Jeramiah J. Smith, Nataliya Y. Timoshevskaya, Vladimir A. Timoshevskiy, Melissa C. Keinath, Drew Hardy, S. Randal Voss Feb 2019

A Chromosome-Scale Assembly Of The Axolotl Genome, Jeramiah J. Smith, Nataliya Y. Timoshevskaya, Vladimir A. Timoshevskiy, Melissa C. Keinath, Drew Hardy, S. Randal Voss

Biology Faculty Publications

The axolotl (Ambystoma mexicanum) provides critical models for studying regeneration, evolution, and development. However, its large genome (∼32 Gb) presents a formidable barrier to genetic analyses. Recent efforts have yielded genome assemblies consisting of thousands of unordered scaffolds that resolve gene structures, but do not yet permit large-scale analyses of genome structure and function. We adapted an established mapping approach to leverage dense SNP typing information and for the first time assemble the axolotl genome into 14 chromosomes. Moreover, we used fluorescence in situ hybridization to verify the structure of these 14 scaffolds and assign each to its …


Refernment: An R Package For Annotating Rna Editing In Plastid Genomes, Tanner A. Robison, Paul G. Wolf Jan 2019

Refernment: An R Package For Annotating Rna Editing In Plastid Genomes, Tanner A. Robison, Paul G. Wolf

Biology Faculty Publications

PREMISE OF THE STUDY: In the absence of cDNA, the annotation of RNA editing in plastomes must be done manually, representing a significant time cost to those studying the organellar genomes of ferns and hornworts.

METHODS AND RESULTS: We developed an R package to automatically annotate apparent nonsense mutations in plastid genomes. The software successfully annotates such sites and results in no false positives for data with no sequencing or assembly errors.

CONCLUSIONS: Compared to manual annotation, ReFernment offers greater speed and accuracy for annotating RNA editing sites. This software should be especially useful for researchers generating large numbers of …


Mrub_3014 Is Orthologous To B2756, Samir Abdelkarim, Dr. Lori Scott Jan 2019

Mrub_3014 Is Orthologous To B2756, Samir Abdelkarim, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We investigated the biological function of the gene Mrub_3014, which we hypothesize is a component of the CRISPR-Cas prokaryotic defense system. We predict that Mrub_3014 (DNA coordinates 3054943..3055575) encodes CRISPR-associated protein Cse3/case which function as an endonuclease. Our hypothesis is supported by identical hits for Mrub_3014 and b2756 to the KEGG, Pfam, TIGRfam, CDD and PDB databases, as well as a low E-value for a pairwise NCBI BLAST comparison. Both protein products are predicted to be localized …


M. Ruber Mrub_3013 Is Orthologous To E. Coli B2755, Laura Butcher, Dr. Lori Scott Jan 2019

M. Ruber Mrub_3013 Is Orthologous To E. Coli B2755, Laura Butcher, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We investigated the biological function of gene Mrub_3013, which we hypothesize is orthologous to b2755 in E. coli K12 MG1655 (a.k.a. Cas1). We investigated the biological function of a gene with the M. ruber locus tag of Mrub_3013, which we hypothesize is a component of the CRISPR-Cas prokaryotic defense system in M. ruber. We predict that Mrub_3013 (DNA coordinates 3,053,978-3,054,940) encodes the protein Cas1 which as part of the CRISPR-Cas system, selects and cuts the foreign …


Mrub_3020, A Paralog Of Mrub_1489, Is Orthologous To E. Coli Casc (Locus Tag B2761), Alfred Dei-Ampeh, Dr. Lori Scott Jan 2019

Mrub_3020, A Paralog Of Mrub_1489, Is Orthologous To E. Coli Casc (Locus Tag B2761), Alfred Dei-Ampeh, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We investigated the biological functions of two genes: mrub_3020 and mrub_1489. We make two hypotheses in this investigation: a) mrub_3020 is orthologous to the gene b2761 in E. coli K12 MG1655 (a.k.a. casC); b) mrub_1489 is a paralog of mrub_3020. We also predict that the two genes encode unique proteins: mrub_3020 with DNA coordinates 3060491…3063190 encodes a CRISPR – associated helicase (Cas3) that supports the Cascade complex of the CRISPR – Cas adaptive immune system …


Effects Of Temperature On Crispr/Cas System, Eddie Beckom, Dr. Lori Scott Jan 2019

Effects Of Temperature On Crispr/Cas System, Eddie Beckom, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We investigated the effect of temperature on the complexity of CRISPR/Cas systems in bacterial organisms across temperature classifications. We predict that temperature extremes would result in CRISPR/Cas systems with multiple operons, repeating cas genes, and complex systems. CRISPR/Cas systems can be classified into three types with a number of subtypes based on the CRISPR-associated genes, cas genes, present in a given organism. Our hypothesis is supported by the presence of multiple operons in thermophilic organisms based on …


An Investigation Into The Relationship Between Mrub_3013, Mrub_1477, And Mrub_0224: Are They Paralogs?, Melette Devore, Dr. Lori Scott Jan 2019

An Investigation Into The Relationship Between Mrub_3013, Mrub_1477, And Mrub_0224: Are They Paralogs?, Melette Devore, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We investigated the biological function of mrub_3013 and the nature of its relationship with mrub_1477 and mrub_0224. We hypothesized that mrub_3013 is orthologous to b2755 in E. coli K12 MG1655 (a.k.a. cas1). We predict that mrub_3013 encodes the enzyme Cas1, which is involved in spacer acquisition in the CRISPR-Cas prokaryotic defense system. Our hypothesis is supported by identical hits for b2755, mrub_3013, mrub_1477, and mrub_0224 from the CDD and Pfam databases and highly similar hits from …


Examination Of Orthologous Genes (Mrub_2518 And B3728, Mrub_2519 And B3727, Mrub_2520 And B3726, Mrub_2521 And B3725) Responsible For Abc Phosphate Transporters In Two Species M. Ruber And E. Coli, Margaret Meyer, Dr. Lori Scott Jan 2018

Examination Of Orthologous Genes (Mrub_2518 And B3728, Mrub_2519 And B3727, Mrub_2520 And B3726, Mrub_2521 And B3725) Responsible For Abc Phosphate Transporters In Two Species M. Ruber And E. Coli, Margaret Meyer, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes b3725, b3726, b3727, b3728 and Mrub_2518, Mrub_2519, Mrub_2520 and Mrub_2521 (KEGG map number 02010). We predict that these genes encode the components of a Phosphate ABC transporter: Orthologous genes Mrub_2518 (DNA coordinates 2565359..2566438) and b3728 encodes the periplasmic phosphate binding component; Orthologous genes Mrub_2519 (DNA coordinates 2566499..2567485) and b3727, and Mrub_2520 (DNA coordinates 2567496..2568326) and b3726 encode for the two transmembrane proteins; Orthologous genes Mrub_2521 (DNA coordinates 2568338..2569159) and b3725 encode for the ATP binding protein within the cytoplasm. Within the two species, M. ruber and E. coli, …


Mrub_1325, Mrub_1326, Mrub_1327, And Mrub_1328 Are Orthologs Of B_3454, B_3455, B_3457, B_3458, Respectively Found In Escherichia Coli Coding For A Branched Chain Amino Acid Atp Binding Cassette (Abc) Transporter System, Bennett Tomlin, Adam Buric, Dr. Lori Scott Jan 2018

Mrub_1325, Mrub_1326, Mrub_1327, And Mrub_1328 Are Orthologs Of B_3454, B_3455, B_3457, B_3458, Respectively Found In Escherichia Coli Coding For A Branched Chain Amino Acid Atp Binding Cassette (Abc) Transporter System, Bennett Tomlin, Adam Buric, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1325, Mrub_1326, Mrub_1327, and Mrub_1328 (KEGG map number 02010). We predict these genes encode components of a Branched Chain Amino Acid ATP Binding Cassette (ABC) transporter: 1) Mrub_1325 (DNA coordinates 1357399-1358130 on the reverse strand) encodes the ATP binding domain; 2) Mrub_1326 (DNA coordinates 1358127-1359899 on the reverse strand) encodes the ATP-binding domain and permease domain; 3) Mrub_1327 (DNA coordinates 1359899-1360930 on the reverse strand) encodes a permease domain; and 4)Mrub_1328 (DNA coordinates 1711022-1712185 on the reverse strand) encodes the substrate binding domain. This system is not predicted to …


Predicted Ortholog Pairs Between E. Coli And M. Ruber Are B3456 And Mrub_2379, B3457 And Mrub_2378, B3456 And Mrub_2374, B3455 And Mrub_2376, And B3454 And Mrub2377, Which Each Code For Components Of A Prokaryotic-Type Abc Transporter For Branched-Chain Amino Acids, Elizabeth Paris, Tony Steinle, Dr. Lori Scott Jan 2018

Predicted Ortholog Pairs Between E. Coli And M. Ruber Are B3456 And Mrub_2379, B3457 And Mrub_2378, B3456 And Mrub_2374, B3455 And Mrub_2376, And B3454 And Mrub2377, Which Each Code For Components Of A Prokaryotic-Type Abc Transporter For Branched-Chain Amino Acids, Elizabeth Paris, Tony Steinle, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_2379, Mrub_2378, Mrub_2374, Mrub_2376, and Mrub_2377 (KEGG map number 02010). We predict these genes encode components of a branched-chain amino acid ATP Binding Cassette (ABC) transporter: 1) Mrub_2374 (DNA coordinates 2424832-2425902 on the reverse strand) encodes one permease component (aka transmembrane domain); 2) Mrub_2378 (DNA coordinates 2429525-2430439 on the reverse strand) encodes the second permease component (aka transmembrane domain); 3) Mrub_2376 (DNA coordinates 2427858-2428613 on the reverse strand) encodes one of the ATP-binding domain (aka nucleotide binding domain); 4) Mrub_2377 (DNA coordinates 2428704-2429489 on the reverse strand) …


Mrub_1199 & Mrub_2272 Of Meiothermus Ruber Are Orthologous Genes To The B0262 Gene In Escherichia Coli While Mrub_1200, Mrub_1201, Mrub_2015 & Mrub_2271 Are Not Orthologous To The B0262 Gene Coding For The Iron (Fe3+) Abc Transport System, Kumail Hussain, Dr. Lori Scott Jan 2018

Mrub_1199 & Mrub_2272 Of Meiothermus Ruber Are Orthologous Genes To The B0262 Gene In Escherichia Coli While Mrub_1200, Mrub_1201, Mrub_2015 & Mrub_2271 Are Not Orthologous To The B0262 Gene Coding For The Iron (Fe3+) Abc Transport System, Kumail Hussain, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1199, Mrub_1200, Mrub_1201, Mrub_2015, Mrub_2271 and Mrub_2272 (KEGG map number 02010). We predict these genes encode components of an Iron (Fe3+) ATP Binding Cassette (ABC) transporter: 1) Mrub_1199 (DNA coordinates [1211595-1212572] on the reverse strand) encodes the permease component (aka transmembrane domain); and 2) Mrub_1200 (DNA coordinates [1212612-1214093] on the reverse strand) encodes the ATP-binding domain (aka nucleotide binding domain); and 3) Mrub_1201 (DNA coordinates [1214347-1215309] on the reverse strand) encodes the substrate binding protein (aka the periplasmic component); and Mrub_2015 ( DNA coordinates [2053963-2054949] on the reverse strand) …


Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott Jan 2018

Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1751, Mrub_1752 and Mrub_1753 (KEGG map number 02010). We predict these genes encode components of a D-xylose ATP Binding Cassette (ABC) transporter: 1) Mrub_1752 (DNA coordinates 1809004-1810224 on the forward strand) encodes the permease component (aka transmembrane domain), predicted to be an ortholog and 2) Mrub_1753 (DNA coordinates 1810227-1811000 on the forward strand) encodes the ATP-binding domain (aka nucleotide binding domain); and 3) Mrub_1751 (DNA coordinates 1807855-1808892 on the forward strand) encodes the solute binding protein. The ABC-transporter for M. ruber to transport D-xylose is homologous with the transporter …


Mrub_1283, Mrub_1284 And Mrub_1285 Encode For A Glycine/Betaine Abc Transporter And Are Orthologs Of E. Coli Prov, Prow And Prox, Lan Dang, Dr. Lori Scott Jan 2018

Mrub_1283, Mrub_1284 And Mrub_1285 Encode For A Glycine/Betaine Abc Transporter And Are Orthologs Of E. Coli Prov, Prow And Prox, Lan Dang, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

ABC transporters are essential for cellular transport; contribute to maintain the homeostasis of the cells. Generally, ABC transporters are multi-subunit; contain essential cytoplasmic factors which are critical to ATP hydrolysis activity. In this paper, we would like to take a closer look to Mrub_1283, Mrub_1284 and Mrub_1285, three consecutive genes in Meiothermus ruber genome. We hypothesize that these genes are in the same operon and encode for ABC glycine/ betaine transporters. To confirm our hypothesis, we utilizes several bioinformatics tools to predict the potential function of Mrub_1283, Mrub_1284 and Mrub_1285 and to search for their orthologs in Escherichia coli genome. …


Mrub_2836, Mrub_1595, And Mrub_1596 Are Orthologs Of B_1857, B_1859 And B_1858 In Escherichia Coli Coding For A Zinc Uptake Abc Transporter System, Austin J. Dollmeyer, Dr. Lori Scott Jan 2018

Mrub_2836, Mrub_1595, And Mrub_1596 Are Orthologs Of B_1857, B_1859 And B_1858 In Escherichia Coli Coding For A Zinc Uptake Abc Transporter System, Austin J. Dollmeyer, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_2836, Mrub_1595, and Mrub_1596 (KEGG map number 02010). We predict these genes encode components of a Zn2+ ATP Binding Cassette (ABC) transporter: 1) Mrub_2836 (DNA coordinates 1878670-2879569 on the complement strand) encodes the substrate binding protein (aka periplasmic protein), predicted to be an ortho; and 2) Mrub_1595 (DNA coordinates 1628074-1628865 on the complement strand) encodes the permease component (aka transmembrane domain); and 3) Mrub_1596 (DNA coordinates 1628867-1629637 on the complement strand) encodes the ATP-binding protein (aka nucleotide binding domain). This is an ATP transport …


Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 And Mrub_2124 Are Orthologs Of E. Coli Genes B3458, B3457, B3456, B3455 And B3454, Respectively, And Make Up An Operon That Codes For The Branched-Chain Amino Acid Abc Transporter In Meiothermus Ruber Dsm 1279, Aaron Jones, Madelyn Huber, Dr. Lori Scott Jan 2018

Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 And Mrub_2124 Are Orthologs Of E. Coli Genes B3458, B3457, B3456, B3455 And B3454, Respectively, And Make Up An Operon That Codes For The Branched-Chain Amino Acid Abc Transporter In Meiothermus Ruber Dsm 1279, Aaron Jones, Madelyn Huber, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 and Mrub_2124 (KEGG map number 02010). We predict these genes encode components of a branched-chain amino acid ATP Binding Cassette (ABC) transporter: 1) Mrub_2120 (DNA coordinates 2169247-2170416 on the reverse strand) encodes the branched-chain amino acid binding protein that is localized to the periplasm; 2) Mrub_2121 (DNA coordinates 2170433..2171353 on the reverse strand) encodes the first TMD; 3) Mrub_2122 (DNA coordinates 2171365..2172279 on the reverse strand) encodes the second TMD; 4) Mrub_2123 (DNA coordinates 2172276..2173028 on the reverse strand) encodes the first NBD; 5) Mrub_2124 …


Mrub_1675, Mrub_1676, Mrub_1677, And Mrub_1679 Genes Are Orthologs Of B_3458, B_3457, B_3456, And B_3454 Genes In E. Coli, Respectively, Coding For Abc Transporters. Mrub_1678 And B_3455, Though Perform Similar Tasks, Are Not Orthologous, Ravi Patel, Alaina Hofmann, Dr. Lori Scott Jan 2018

Mrub_1675, Mrub_1676, Mrub_1677, And Mrub_1679 Genes Are Orthologs Of B_3458, B_3457, B_3456, And B_3454 Genes In E. Coli, Respectively, Coding For Abc Transporters. Mrub_1678 And B_3455, Though Perform Similar Tasks, Are Not Orthologous, Ravi Patel, Alaina Hofmann, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1675, Mrub_1676, Mrub_1677, and Mrub_1679 (KEGG map number 02010). We predict these genes encode components of a Branched chain amino acid (ABC) transporter: Mrub_1675 (DNA coordinates 1711022..1712185 on the reverse strand) encodes the permease component, Mrub_1676 (DNA coordinates 1712313..1713170) encodes for the NBD (aka nucleotide binding domain), Mrub_1677 (DNA coordinates 1713167..1714075 on the reverse strand) encodes the NBD (aka nucleotide binding domain), Mrub_1678 (DNA coordinates 1713167..1714075 on the reverse strand) encodes the TMD (aka transmembrane domain) and Mrub_1679 (DNA coordinates 1714781..1715485 on the reverse strand) encodes …


Mrub_0680, Mrub_0836, And Mrub_0837 Found To Be Orthologous To E. Coli Ccma, Ccmb, And Ccmc, Respectively, Coding For Abc-Transport Proteins Involved In Cytochrome-C Biogenesis, Sarah N. Church, Dr. Lori Scott Jan 2018

Mrub_0680, Mrub_0836, And Mrub_0837 Found To Be Orthologous To E. Coli Ccma, Ccmb, And Ccmc, Respectively, Coding For Abc-Transport Proteins Involved In Cytochrome-C Biogenesis, Sarah N. Church, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_0680, Mrub_0836 and Mrub_0837(KEGG map number 02010). We predict these genes encode components of a Heme ATP Binding Cassette (ABC) transporter: 1) Mrub_0836 (DNA coordinates 823734..824399on the reverse strand) encodes the permease component (aka transmembrane domain), predicted to be an ortho; and 2) Mrub_0680(DNA coordinates 659484..660071 on the reverse strand) encodes the ATP-binding domain (aka nucleotide binding domain); and 3) Mrub_0837(DNA coordinates 824570..825262on the reverse strand) encodes the solute binding protein. This gene system encodes a transmembrane exporter and helper proteins which are thought to …


Discovery Of Sex-Specific Regions In A Salamander Genome, Nataliya Y. Timoshevskaya, Melissa C. Keinath, Jeramiah J. Smith Oct 2017

Discovery Of Sex-Specific Regions In A Salamander Genome, Nataliya Y. Timoshevskaya, Melissa C. Keinath, Jeramiah J. Smith

Commonwealth Computational Summit

Biological Aspects:

Salamander (Ambystoma mexicanum) has a gigantic genome: ~32,000,000,000 bases (10X of size of human genome)

Sex is determined by a pair of morphologically identical chromosomes:

  • ZZ in male
  • ZW in female

Object:

  • Find (if there are any) genomic differences between chromosomes W and Z

Workflow:

  1. Sequencing and de novo assembly of the reference salamander genome
  2. Alignment of short sequences from male and female genomes to the reference
  3. Coverage analysis


The Lamprey Genome: Illuminating Genomic Change Across Eons And Embryogenesis, Jeramiah J. Smith, Courtney K. M. Waterbury, Melissa C. Keinath, Cody B. Saraceno, Vladimir A. Timoshevskiy, Nataliya Y. Timoshevskaya Oct 2017

The Lamprey Genome: Illuminating Genomic Change Across Eons And Embryogenesis, Jeramiah J. Smith, Courtney K. M. Waterbury, Melissa C. Keinath, Cody B. Saraceno, Vladimir A. Timoshevskiy, Nataliya Y. Timoshevskaya

Commonwealth Computational Summit

The lamprey genome provides unique insights into both the deep evolutionary history of vertebrate genomes and the maintenance of genome structure/integrity over development. The lamprey lineage diverged from all other vertebrates approximately 500 million years ago. As such, comparisons between lamprey and other vertebrates permit reconstruction of ancient duplication and rearrangement events that defined the fundamental architecture and gene content of all extant vertebrate genomes. Lamprey also undergoes programmatic changes genome structure that result in the physical elimination of ~20% of its genomic DNA (~0.5Gb from a ~2 Gb genome) from all somatic cell lineages during early embryonic development. Here, …


Deep Ancestry Of Programmed Genome Rearrangement In Lampreys, Vladimir A. Timoshevskiy, Ralph T. Lampman, Jon E. Hess, Laurie L. Porter, Jeramiah J. Smith Sep 2017

Deep Ancestry Of Programmed Genome Rearrangement In Lampreys, Vladimir A. Timoshevskiy, Ralph T. Lampman, Jon E. Hess, Laurie L. Porter, Jeramiah J. Smith

Biology Faculty Publications

In most multicellular organisms, the structure and content of the genome is rigorously maintained over the course of development. However some species have evolved genome biologies that permit, or require, developmentally regulated changes in the physical structure and content of the genome (programmed genome rearrangement: PGR). Relatively few vertebrates are known to undergo PGR, although all agnathans surveyed to date (several hagfish and one lamprey: Petromyzon marinus) show evidence of large scale PGR. To further resolve the ancestry of PGR within vertebrates, we developed probes that allow simultaneous tracking of nearly all sequences eliminated by PGR in P. marinus and …


A Linkage Map For The Newt Notophthalmus Viridescens: Insights In Vertebrate Genome And Chromosome Evolution, Melissa C. Keinath, S. Randal Voss, Panagiotis A. Tsonis, Jeramiah J. Smith Jun 2017

A Linkage Map For The Newt Notophthalmus Viridescens: Insights In Vertebrate Genome And Chromosome Evolution, Melissa C. Keinath, S. Randal Voss, Panagiotis A. Tsonis, Jeramiah J. Smith

Biology Faculty Publications

Genetic linkage maps are fundamental resources that enable diverse genetic and genomic approaches, including quantitative trait locus (QTL) analyses and comparative studies of genome evolution. It is straightforward to build linkage maps for species that are amenable to laboratory culture and genetic crossing designs, and that have relatively small genomes and few chromosomes. It is more difficult to generate linkage maps for species that do not meet these criteria. Here, we introduce a method to rapidly build linkage maps for salamanders, which are known for their enormous genome sizes. As proof of principle, we developed a linkage map with thousands …


Mrub_1873, Mrub_1872, Mrub_1871 Genes Are Predicted Orthologs Of The B2285, B2284, And B2283 Genes Respectively, Found In Escherichia Coli Coding For Nadh Ubiquinone Oxidoreductase Complex Subunits E, F, And G., Hannah Lohmeier, Dr. Lori R. Scott Jan 2017

Mrub_1873, Mrub_1872, Mrub_1871 Genes Are Predicted Orthologs Of The B2285, B2284, And B2283 Genes Respectively, Found In Escherichia Coli Coding For Nadh Ubiquinone Oxidoreductase Complex Subunits E, F, And G., Hannah Lohmeier, Dr. Lori R. Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_1873, Mrub_1872, and Mrub_1871.We predict that Mrub_1873 (DNA coordinates 1933743..1934309 on the reverse strand), Mrub_1872 (DNA coordinates 1932430..1933746 on the reverse strand), and Mrub_1871 (DNA coordinates 1930055..1932421 on the reverse strand) are subunits of the NADH ubiquinone oxidoreductase complex (00190). The complex catalyzes both the transfer of protons across the cytoplasmic membrane and the transfer of electrons to ubiquinone during …